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Abstract

Financial market volatility is an important input for investment, option

pricing and financial market regulation. In this review article, we compare the

volatility forecasting findings in 93 papers published and written in the last

two decades. This article is written for general readers in Economics, and its

emphasis is on forecasting instead of modelling. We separate the literature

into two main streams; the first consists of research papers that formulate

volatility forecasts based on historical price information only, while the second

includes research papers that make use of volatility implied in option prices.

Provided in this paper as well are volatility definitions, insights into prob-

lematic issues of forecast evaluation, the effect of data frequency on volatility

forecast accuracy, measurement of “actual” volatility, and the confounding

effect of extreme values on volatility forecasting performance. We compare

volatility forecasting results across different asset classes, and markets in dif-

ferent geographical regions. Suggestions are made for future research.

Keywords: Volatility, ARCH, Option Implied, High Frequency Data,

Forecast Evaluation.

JEL classification: A10, C10, C50, G10.
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1 Introduction

Volatility forecasting is an important task in financial markets and it has occupied the

attention of academicians and practitioners over the last two decades. At the time of

writing, there are at least 93 published and working papers that study forecasting perfor-

mance of various volatility models, and several times that number have been written on

the subject of volatility modelling alone without the forecasting aspect. This extensive

volatility research reflects the importance of volatility in investment, security valuation,

risk management and monetary policy making.

Volatility is not the same as risk. When it is interpreted as uncertainty, it becomes a

key input to many investment decisions and portfolios creations. Investors and portfolio

managers have certain levels of risk threshold at which they could bear. A good forecast

of volatility of prices of asset over the investment holding period is a good starting point

for assessing investment risk.

Volatility is the most important variable in the pricing of derivative securities, of

which trading volume has been quadrupled in recent years. To price an option, we need

to know the volatility of the underlying asset from now till the option expires. In fact,

the market convention is to list option price in term of volatility units. Nowadays, one

can buy derivatives that are written on volatility itself, in which case the definition and

measurement of volatility will be clearly specified in the derivative contracts. In these

new contracts, volatility now becomes the underlying “asset”. So volatility forecast and

a second prediction on the volatility of volatility over the defined period will be needed

in order to price such derivative contracts.

Financial risk management has taken a centre role since the first Basle Accord was

established in 1996. This effectively makes volatility forecasting a compulsory risk man-

agement exercise for many financial institutions around the world. Banks and trading

houses have to set aside reserve capital of at least three times that of value-at-risk (VaR),

which is defined as the minimum expected loss with a 1% confidence level for a given time

horizon (usually 1 or 10 days). Sometimes, a 5% critical value is used. Such VaR estimates

are readily available given volatility forecast, mean estimate and a normal distribution as-

sumption for the changes in total asset value. When the normal distribution assumption

is disputed, which is very often the case; volatility is still needed in the simulation process

used to produce the VaR figures.

Financial market volatility can have a wide repercussion on the economy as a whole.

The incidents caused by the terrorists’ attack on September 11, 2001, and the recent

financial reporting scandals in the US have caused great turmoil to the financial markets

over several continents and a negative impact on the world economy. This is a clear
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evidence of the important link between financial market uncertainty and public confidence.

For this reason, policy makers often rely on market’s estimates of volatility as a barometer

for the vulnerability of financial markets and the economy. In the US, the Federal Reserve

explicitly takes into account the volatility of stocks, bonds, currencies and commodities

in establishing its monetary policy (Nasar (1992)). The Bank of England is also known to

make frequent references to market sentiment and option implied densities of key financial

variables in its monetary policy meetings.

Given the important role of volatility forecast and that so much has been written

on volatility forecasting, this paper aims to provide a comprehensive coverage of the

status of this research. Taking a utilitarian viewpoint, we believe that the success of a

volatility model lies in its out-of-sample forecasting power. It is impossible, in practice, to

perform tests on all volatility forecasting models on a large number of data sets and over

many different periods. By carefully reviewing the methodologies and empirical findings

in 93 papers, the contribution of this review is to provide a birdseye view of the whole

volatility forecasting literature and to provide some recommendations for the practice and

future research. Knight and Satchell (1998) is the first book to cover many issues and

early empirical results related to volatility forecasting, which we draw upon frequently.

However, our focus here is on the 93 papers and the collective findings in this pool of

research effort. We have excluded in this review all papers that do not produce out-of-

sample volatility forecasts, and papers that forecast correlations although these might be

useful for forecasting portfolio risk.

The remaining sections are organized as follows. Section 2 provides some preliminar-

ies such as the definition and the measurement of volatility, and lists some confounding

factors such as forecast horizons and data frequency. Section 3 introduces the two broad

categories of methods widely used in making volatility forecasts, viz. time series models

and option ISD (implied standard deviation). Section 4 lists a number of forecast per-

formance measures and raises various issues related to forecasts evaluation. Sections 5

and 6 are the core sections of this paper. Section 5 reviews research papers that forecast

volatility based on historical price information only. Section 6 reviews research papers

that use option ISD alone, or as an addition to historical price information, to forecast fu-

ture volatility. Section 7 discusses our view about research and achievement in volatility

forecasting and provides some directions for future research. Section 8 summarises and

concludes. The technical specifications of volatility models are listed in an Appendix. A

list containing a short summary for each of the 93 papers are provided at the end.
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2 Some preliminaries

2.1 Volatility, standard deviation and risk

Many investors and generations of finance students often have an incomplete appreciation

of the differences between volatility, standard deviation and risk. It is worth elucidating

some of the conceptual issues here. In finance, volatility is often used to refer to standard

deviation, ¾, or variance, ¾2, computed from a set of observations as

b¾2 = 1

N ¡ 1

NX
t=1

¡
Rt ¡R

¢2
; (1)

where R is the mean return. The sample standard deviation statistic b¾ is a distribution

free parameter representing the second moment characteristic of the sample. Only when

¾ is attached to a standard distribution, such as a normal or a Student-t distributions, the

required probability density and cumulative probability density can be derived analyti-

cally. Indeed, ¾ can be calculated from any irregular shape distributions, in which case

the probability density will have to be derived empirically. In the continuous time setting,

¾ is a scale parameter that multiplies or reduces the size of the fluctuations generated

by the standard wiener process. Depending on the dynamic of the underlying stochastic

process and whether or not the parameters are time varying, very different shapes of re-

turns distributions might result. So it is meaningless to use ¾ as a risk measure unless it is

attached to a distribution or a pricing dynamic. When ¾ is used to measure uncertainty,

the users usually have in mind, maybe implicitly, a normal distribution for the returns

distribution.

Standard deviation, ¾, is the correct dispersion measure for the normal distribution

and some other distributions, but not all. Other measures that were suggested and found

useful including the mean absolute return and the inter-quantile range. However, the link

between volatility and risk is tenuous, in particular risk is more often associated with

small, or negative, returns whereas most measures of dispersion make no such distinction.

The Sharpe ratio for example, defined as return in excess of risk free rate divided by stan-

dard deviation, is frequently used as an investment performance measure. It incorrectly

penalizes occasional high returns. The idea of “semi-variance”, an early suggestion by

Markowitz (1991), which only uses the squares of returns below the mean, has not been

widely used, largely because it is not operationally easy to apply in portfolio construction.

2.2 Volatility definition and measurement

As mentioned previously, volatility is often calculated as the sample standard deviation

which is the square root of equation (1). Figlewski (1997) notes that since the statistical
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properties of sample mean make it a very inaccurate estimate of the true mean especially

for small samples, taking deviations around zero instead of the sample mean as in equation

(1) typically increases volatility forecast accuracy. There are methods for estimating

volatility that are designed to exploit or reduce the influence of extremes.1 While equation

(1) is an unbiased estimate of ¾2, the square root of b¾2 is a biased estimate of ¾ due to

Jensen inequality.2 Ding, Granger and Engle (1993) suggest measuring volatility directly

from absolute returns.3

To understand the continuous time analogue of (1), we assume for the ease of exposition

that the instantaneous returns are generated by the continuous time martingale,

dpt = ¾t dWp;t (2)

where dWp;t denotes a standard wiener process. From (2) the conditional variance for

the one-period returns, rt+1 ´ pt+1 ¡ pt, is
R 1

0
¾
2
t+¿

d¿ which is known as the integrated

volatility over the period t to t + 1. This quantity is also of central importance in the

pricing of derivative securities under stochastic volatility (see Hull and White (1987)).

While pt can be observed at time t, ¾t is an unobservable latent variable that scales the

stochastic process dWp;t continuously through time.

Let m be the sampling frequency and that there are m continuously compounded

returns in one unit time such that

rm;t ´ pt ¡ pt¡1/m :

If the discretely sampled returns are serially uncorrelated and that the sample path for

¾t is continuous, it follows from the theory of quadratic variation (Karatzas and Shreve

(1988)) that

p lim
m!1

0
@
Z 1

0

¾
2
t+¿d¿ ¡

X
j=1;¢¢¢;m

r
2
m;t+ j/m

1
A
= 0:

Hence time t volatility is theoretically observable from the sample path of the return

process so long as the sampling process is frequent enough. The term realized volatility

has been used in Fung and Hsieh (1991) and Andersen and Bollerslev (1998) to mean
1For example, the Maximum likelihood method proposed by Ball and Torous (1984), the high-low

method proposed by Parkinson (1980) and Garman and Klass (1980).
2See Fleming 1998, footnote 10. Cox and Rubinstein (1985, p.256) explain how this bias can be

corrected assuming a normal distribution for Rt. However, in most cases, the impact of this adjustment

is small.
3Davidian and Carroll (1987) show absolute returns volatility specification is more robust against

asymmetry and nonnormality. There are some empirical evidence that deviations or absolute returns

based models produce better volatility forecasts than models based on squared returns (Taylor (1986),

Ederinton and Guan (2000a) and McKenzie (1999)) but the majority of time series volatility models are

squared returns models.
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the sum of intraday squared returns at short intervals such as 15- or 5-minutes.4 Such a

volatility estimator has been shown to provide an accurate estimate of the latent process

that defines volatility. Characteristics of financial market data used in these studies sug-

gest that returns measured at an interval shorter than 5 minutes are plagued by spurious

serial correlation caused by various market microstructure effects including nonsynchro-

nous trading, discrete price observations, intraday periodic volatility pattern and bid-ask

bounce. Andersen and Bollerslev (1998) and Christodoulakis and Satchell (1988) show

how the inherent noise in the approximation of actual and unobservable volatility by

square returns results in misleading forecast evaluation. These theoretical results turn

out to have a major implication on volatility forecasting research. We shall return to this

important issue in Section 4.4.

2.3 Stylized facts about financial market volatility

There are several salient features about financial time series and financial market volatility

that are now well documented. These include fat tail distributions of risky asset returns,

volatility clustering, asymmetry and mean reversion, and co-movements of volatilities

across assets and financial markets. More recent research finds correlation among volatil-

ity is stronger than that among returns and both tend to increase during bear markets and

financial crises. Since volatility of financial time series has complex structure, Diebold,

Hickman, Inoue and Schuermann (1998) warn that forecast estimates will differ depend-

ing on the current level of volatility, volatility structure (e.g. the degree of persistence

and mean reversion etc.) and the forecast horizon. These will be made clearer in the

discussions below.

If returns are iid (independent and identically distributed, or strict white noise), then

variance of returns over a long horizon can be derived as a simple multiple of single period

variance. But, this is clearly not the case for many financial time series because of the

stylized facts listed above. While a point forecast of b¾ T¡1;T j t¡1 becomes very noisy

as T ! 1, a cumulative forecast, b¾ t;T j t¡1, becomes more accurate because of errors

cancellation and volatility mean reversion unless there is a fundamental change in the

volatility level or structure.5

4 In the foreign exchange markets, quotes for major exchange rates are available round the clock. In

the case of stock markets, close-to-open square return is used in the volatility aggregation process during

market close.

5
bσ t,T | t−1 denotes a volatility forecast formulated at time t−1 for volatility over the period from t to T .

In pricing options, the required volatility parameter is the expected volatility over the life of the option.

The pricing model relies on a riskless hedge to be followed through until the option reaches maturity.

Therefore the required volatility input, or the implied volatility derived, is a cumulative volatility forecast

over the option maturity and not a point forecast of volatility at option maturity. The interest in
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Some studies find volatility time series appears to have a unit root (Perry (1982) and

Pagan and Schwert (1990)). That is

¾t = Á¾t¡1 + "t;

with Á indistinguishable from 1. Other papers find some volatility measures of daily and

intra-day returns have a long memory property (see Granger, Ding, and Spear (2000)

for examples and references). The autocorrelations of variances, and particularly those

of mean absolute deviations, stay positive and significantly above zero for lags up to a

thousand or more. These findings are important because they imply that a shock in the

volatility process will have a long lasting impact.

Complication in relation to the choice of forecast horizon is partly due to volatility

mean reversion. In general, volatility forecast accuracy improves as data sampling fre-

quency increases relative to forecast horizon (Andersen, Bollerslev and Lange (1999)).

However, for forecasting volatility over a long horizon, Figlewski (1997) finds forecast

error doubled in size when daily data, instead of monthly data, is used to forecast volatil-

ity over 24 months. In some cases, where application is of very long horizon e.g. over

10 years, volatility estimate calculated using weekly or monthly data is better because

volatility mean reversion is difficult to adjust using high frequency data. In general, model

based forecasts lose supremacy when the forecast horizon increases with respect to the

data frequency. For forecast horizons that are longer than 6 months, a simple historical

method using low frequency data over a period at least as long as the forecast horizon

works best (Alford and Boatsman (1995) and Figlewski (1997)).

As far as sampling frequency is concerned, Drost and Nijman (1993) prove, theoret-

ically and for a special case (i.e. the GARCH(1,1) process, which will be introduced

in Section 3.1.2 later), that volatility structure should be preserved through intertempo-

ral aggregation. This means that whether one models volatility at the hourly, daily or

monthly intervals, the volatility structure should be the same. But, it is well known that

this is not the case in practice; volatility persistence, which is highly significant in daily

data, weakens as the frequency of data decreases.6 This further complicates any attempt

to generalize volatility patterns and forecasting results.

forecasting σ t,T | t−1 goes beyond the riskless hedge argument however.
6See Diebold (1988), Baillie and Bollerslev (1989) and Poon and Taylor (1992) for examples. Note that

Nelson (1992) points out separately that as the sampling frequency becomes shorter, volatility modelled

using discrete time model approaches its diffusion limit and persistence is to be expected provided that

the underlying returns is a diffusion or a near diffusion process with no jumps.
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3 Models used in volatility forecasting

In this section, we first describe various popular time series volatility models that use

the historical information set to formulate volatility forecasts and a second approach that

derives market estimates of future volatility from traded option prices. Nonparametric

methods for volatility forecasting have been suggested. But, as nonparametric methods

were reported to perform poorly (Pagan and Schwert (1990) and West and Cho (1995)),

they will not be discussed here. Also excluded from discussion here are volatility models

that are based on neural network (Hu and Tsoukalas (1999)), genetic programming (e.g.

Zumbach, Pictet and Masutti (2001), time change and duration (e.g. Cho and Frees

(1988) and Engle and Russell (1998)).

3.1 Times series volatility forecasting models

Brown (1990), Engle (1993) and Aydemir (1998) contain lists of time series models for

estimating and modelling volatility. Kroner (1996) explains how volatility forecasts can

be created and used. In this section, we narrow our discussion to models that are used in

the 93 papers reviewed here. The specifications of these volatility models are provided in

Appendix A.

All models described in this section capture volatility persistence or clustering. Others

take into account volatility asymmetry also. It is quite easy to construct a supply and

demand model for financial assets, with supply a constant and demand partly driven by

an external instrument that enters non-linearity, that will produce a model for financial

returns that is heteroskedastic. Such a model is to some extent “theory based” but is not

necessarily realistic. The pure time series models discussed in this section are not based

on theoretical foundations but are selected to capture the main features of volatility found

with actual returns. If successful in this, it is reasonable to expect that they will have

some forecasting ability.

3.1.1 Predictions based on past standard deviations

This group of models start on the basis that ¾t¡¿
for all ¿ > 0 is known or can be estimated

at time t ¡ 1. The simplest historical price model is the Random Walk model, where

¾t¡1 is used as a forecast for ¾t. Extending this idea, we have the Historical Average

method, the simple Moving Average method, the Exponential Smoothing method and the

Exponentially Weighted Moving Average method. The Historical Average method makes

use of all historical standard deviations while the Moving Average method discards the

older estimates. Similarly the Exponential Smoothing method uses all historical estimates

and the Exponentially Weighted Moving Average (EWMA ) method uses only the more
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recent ones. But unlike the previous two, the two exponential methods place greater

weights on the more recent volatility estimates. All together, the four methods reflect a

tradeoff between increasing the number of observations and sampling nearer to time t.

The RiskmetricsTM model is a procedure that uses the EWMA method. Smooth

Transition Exponential Smoothing model, proposed by Taylor (2001), is a more flexible

version of exponential smoothing where the weight depends on the size, and sometimes

the sign as well, of the previous return. Next we have the Simple Regression method

which expresses volatility as a function of its past values and an error term. The Simple

Regression method is principally autoregressive. If past volatility errors are also included,

one gets the ARMA model for volatility. Introducing a differencing order I(d), we get

ARIMA when d = 1 and ARFIMA when d < 1. Finally, we have the Threshold Au-

toregressive model, where the thresholds separate volatility into states with independent

simple regression models and noise processes for volatility in each state.

Apart from Random Walk and Historical Average, successful applications of models

described in this section normally involve searching for the optimal lag length or weighting

scheme in an estimation period for out-of-sample forecasting. Such optimisation generally

involves minimising in-sample volatility forecast errors. A more sophisticated forecasting

procedure would involve constant updating of parameter estimates when new information

is observed and absorbed into the estimation period.

3.1.2 ARCH class conditional volatility models

A more sophisticated group of time series models is the ARCH family, which is extensively

surveyed in Bera and Higgins (1993), Bollerslev, Chou and Kroner (1992), Bollerslev,

Engle and Nelson (194) and Diebold and Lopez (1995). In contrast to models described

in Section 3.1.1, ARCH class models do not make use of sample standard deviations,

but formulate conditional variance, ht, of returns via maximum likelihood procedure.

Moreover, because of the way ARCH class models are constructed, ht is known at time

t¡ 1. So the one-step ahead forecast is readily available. Forecasts that are more than

one-step ahead can be formulated based on an iterative procedure.

The first example of ARCH model is ARCH(q) (Engle (1982)) where ht is a function

of q past squared returns. In GARCH (p, q) (Bollerslev (1986) and Taylor (1986)),

additional dependencies are permitted on p lags of past ht. Empirical findings suggest

that GARCH is a more parsimonious model than ARCH, and GARCH(1,1) is the most

popular structure for many financial time series. It turns out that RiskmetricsTM

EWMA is a non-stationary version of GARCH(1,1) where the persistence parameters

sum to 1 and there is no finite fourth moment. Such a model is often called an integrated

model, which should not be confused with integrated volatility described in Section 2.2.
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While unconvincing theoretically as a volatility generating process, an integrated model for

volatility can nevertheless be estimated and has been shown to be powerful for prediction

over short horizon as it is not conditioned on a mean level of volatility and it adjusts to

changes in unconditional volatility quickly.

The EGARCH (Exponential GARCH) model (Nelson (1991)) specifies conditional

variance in logarithmic form, which means that there is no need to impose estima-

tion constraint in order to avoid negative variance. With appropriate conditioning of

the parameters, this specification captures the stylized fact that a negative shock lead

to a higher conditional variance in the subsequent period than a positive shock would.

Other models that allow for non-symmetrical dependencies are the TGARCH (Thresh-

old GARCH) which is similar to the GJR-GARCH (Glosten, Jagannathan and Runkle

(1993)), QGARCH (Quadratic GARCH) and various other non-linear GARCH reviewed

in Franses and van Dijk (2000).

Both ARCH and GARCH models have been implemented with a Hamilton (1989)

type regime switching framework, where volatility persistence can take different values

depending on whether it is in high or low volatility regimes. The most generalised form of

regime switching model is the RS-GARCH(1,1) model used in Gray (1996) and Klaassen

(1998).

As mentioned before volatility persistence is a feature that many time series models

are designed to capture. A GARCH model features an exponential decay in the autocor-

relation of conditional variances. However, it has been noted that squared and absolute

returns of financial assets typically have serial correlations that are slow to decay similar to

those of an I(d) process. A shock in the volatility series seems to have very “long memory”

and impact on future volatility over a long horizon. The Integrated GARCH (IGARCH)

model of Engle and Bollerslev (1986) captures this effect but a shock in this model im-

pacts upon future volatility over an infinite horizon and the unconditional variance does

not exist for this model. This gives rise to FIGARCH(p; d; q) in Baillie, Bollerslev and

Mikkelsen (1996) and FIEGARCH(p; d; q) in Bollerslev and Mikkelsen (1996) with d ¸ 0.

Provided that d < 0:5, the fractional integrated model is covariance stationary. However,

as Hwang and Satchell (1998) and Granger (2001) point out, positive I(d ) process has a

positive drift term or a time trend in volatility level which is not observed in practice.

This is a major weakness of the fractionally integrated model for it to be adopted as a

theoretically sound model for volatility.

It is important to note that there are many data generating processes, other than an

I(d) process, that also exhibit long memory in covariances. The short-memory station-

ary series with occasional breaks in mean in Granger and Hyung (2000) is an example.

Diebold and Inoue (2001) show stochastic regime switching can be easily confused with
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long memory if only a small amount of regime switching occurs. Zumbach (2002), on

the other hand, captures long memory using IGARCH(2) (i.e. the sum of two IGARCH)

and a LM model which aggregates high frequency squared returns with a set of power law

weights.

3.1.3 Stochastic volatility models

In the stochastic volatility (SV) modelling framework, volatility is subject to a source

of innovations that may or may not be related to those that drive returns. Modelling

volatility as a stochastic variable immediately leads to fat tail distributions for returns.

Autoregressive term in the volatility process introduces persistence, and correlation be-

tween the two innovative terms in the volatility process and the return process produces

volatility asymmetry (Hull and White (1987, 1988)). Long memory SV models have also

been proposed by allowing volatility to have a fractional integrated order (see Harvey,

1998).

For an excellent survey of SVwork see Ghysels, Harvey and Renault (1996) but the sub-

ject is rapidly changing. The volatility noise term makes the SV model a lot more flexible,

but as a result the SV model has no closed form, and hence cannot be estimated directly

by maximum likelihood. The quasi-maximum likelihood estimation (QMLE) approach

of Harvey, Ruiz and Shephard (1994) is inefficient if volatility proxies are non-Gaussian

(Andersen and Sorensen (1997)). The alternatives are the generalized method of mo-

ments (GMM) approach through simulations (Duffie and Singleton (1993)), or analytical

solutions (Singleton (2001)), and the likelihood approach through numerical integration

(Fridman and Harris (1988)) or Monte Carlo integration using either importance sampling

(Danielsson (1994), Pitt and Shephard (1997), Durbin and Koopman (2000)) or Markov

Chain (e.g. Jacquier, Polson and Rossi (1994), Kim, Shephard and Chib (1998)).

3.2 Options based volatility forecasts

A European style call (put) option is a right, but not an obligation, to purchase (sell)

an asset at a strike price on option maturity date, T . An American style option is a

European option that can be exercised prior to T . The Black-Scholes model for pricing

European equity options (Black and Scholes (1973)) assumes stock price has the following

dynamics

dS = ¹Sdt + ¾Sdz ; (3)

and for the growth rate on stock

dS

S
= ¹dt + ¾dz : (4)
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From ito lemma, the logarithmic of stock price has the following dynamics

d lnS =

�
¹¡

1

2
¾2

¶
dt+ ¾dz , (5)

which means that stock price has a lognormal distribution or the logarithm of stock price

has a normal distribution. Using a riskless hedge argument, Black-Scholes proved that

under certain assumptions, options prices can be derived using a risk neutral valuation

relationship where all derivative assets generate only risk free returns. Under this risk

neutral setting, investor risk preference and the required rate of returns on stock, ¹ in

(4), are irrelevant as far as the pricing of derivatives is concerned. The Black-Scholes

assumptions include constant volatility, ¾, short sell with full use of proceeds, no transac-

tion costs or taxes, divisible securities, no dividend before option maturity, no arbitrage,

continuous trading and a constant risk free interest rate, r.

Empirical findings suggest that option pricing is not sensitive to the assumption of a

constant interest rate. There are now good approximating solutions for pricing American

style options that can be exercised early and options that encounter dividend payments

before option maturity. The impact of stochastic volatility on option pricing is much more

profound, an issue which we shall return to shortly. Apart from the constant volatility

assumption, the violation of any of the remaining assumptions will result in the option

price being traded within a band instead of at the theoretical price.

The Black-Scholes European option pricing formula states that option price at time

t is a function of St (the price of the underlying asset), X (the strike price), r (the risk

free interest rate), T (time to option maturity) and ¾ (volatility of the underlying asset

over the period from t to T ). Given that St; X; r and T are observable, once the market

has produced a price (either a quote or a transaction price) for the option, we could use

a backward induction technique to derive ¾ that the market used as an input. Such a

volatility estimate is called option implied volatility. Since the reference period is from t

to T in the future, option implied volatility is often interpreted as a market’s expectation

of volatility over the option’s maturity, i.e. the period from t to T .

Given that each asset can have only one ¾, it is a well known puzzle that options of

the same time to maturity, but differ in strikes, appeared to produce different implied

volatility estimates for the same underlying asset. Volatility smile, smirk and sneer are

names given to non-linear shapes of implied volatility plots (against strike price). There

are at least two theoretical explanations (viz. distributional assumption and stochastic

volatility) for this puzzle. Other explanations that are based on market microstructure

and measurement errors (e.g. liquidity, bid-ask spread and tick size) and investor risk

preference (e.g. model risk, lottery premium and portfolio insurance) have also been

proposed.
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3.2.1 Distributional assumption

To understand how Black-Scholes distributional assumption produces volatility smile, we

need to make use of the positive relationship between volatility and option price, and the

put-call parity7

ct +Xer(T¡t) = pt + St (6)

which established the positive relationship between call and put option prices. Since

implied volatility is positively related to option price, equation (6) suggests there is also

a positive relationship between implied volatilities derived from call and put options that

have the same strike price and the same time to maturity.

As mentioned before Black-Scholes requires stock price in (5) to follow a lognormal

distribution or the logarithmic stock returns to have a normal distribution. It is now a

widely documented empirical evidence that risky financial asset returns have leptokurtic

tails. In the case where strike price is very high, the call option is deep-out-of-the-money8

and the probability for this option to be exercised is very low. Nevertheless, a leptokurtic

right tail will give this option a higher probability, than that from a normal distribution,

for the terminal asset price to exceed the strike price and the call option to finish in the

money. This higher probability leads to a higher call price and a higher Black-Scholes

implied volatility at high strike.

Next, we look at the case when strike price is low. First note that option value has

two components; intrinsic value and time value. Intrinsic value reflects how deep the

option is in the money. Time value reflects the amount of uncertainty before the option

expires, hence it is most influenced by volatility. Deep-in-the-money call option has high

intrinsic value and little time value, and a small amount of bid-ask spread or transaction

tick size is sufficient to perturb the implied volatility estimation. We could however make

use of the previous argument but apply it to out-of-the-money (OTM) put option at low

strike price. OTM put option has a close to nil intrinsic value and the put option price

is due mainly to time value. Again because of the thicker tail on the left, we expect the

probability that OTM put option finishes in the money to be higher than that for a normal

distribution. Hence the put option price (and hence the call option price through put-call

parity) should be greater than that predicted by Black-Scholes. If we use Black-Scholes

to invert volatility estimates from these option prices, the Black-Scholes implied will be
7Much of the discussion here is from Hull (2000).
8 In option terminology, an option is out of the money when it is not profitable to exercise the option.

For call option, this happens when S < X, and in the case of put, the condition is S > X . The reverse

is true for in-the-money option. A call or a put is said to be at the money (ATM) when S = X. Near-

the-money option is an option that is not exactly ATM, but close to being ATM. Sometimes, discounted

values of S and X are used in the conditions.
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higher than actual volatility. This results in volatility smile where implied volatility is

much higher at very low and very high strikes.

The above arguments apply readily to the currency market where exchange rate re-

turns exhibit thick tail distributions that are approximately symmetrical. In the stock

market, volatility skew (i.e. low implied at high strike but high implied at low strike) is

more common than volatility smile after the October 1987 stock market crash. Since

the distribution is skewed to the far left, the right tail can be thinner than the normal

distribution. In this case implied volatility at high strike will be lower than that expected

from a volatility smile.

3.2.2 Effect of stochastic volatility

The thick tail and non-symmetrical distribution referred to in the previous section could

be a result of volatility being stochastic. First, we rewrite (3) as

dSt = ¹
s
St dt+ ¾t St dzs (7)

and now ¾t has its own dynamics

d¾2
t
=

¡
¹
v
¡ ¯¾2

t

¢
dt+ ¾v ¾t dzv (8)

where ¯ is the speed of the volatility process mean reverting to the long run average
³
¹
v

¯

´
,

¾v is the volatility of volatility, and ½, not shown above, is the correlation between dzs

and dzv.

When ½ = 0, the price process and the volatility process are not correlated, ¾v alone

is enough to produce kurtosis and Black-Scholes volatility smile. When ½ < 0, large

negative returns corresponds to high volatility stretching the left tail further into the left.

On the other hand, when return is very high, volatility is low, “squashing” the right tail

nearer to the centre. This will give rise to low implied volatility at high strikes and

volatility skew. The reverse is true when ½ > 0.

Given that volatility is not a directly tradable asset, the hedging mechanism used in

Black-Scholes may not apply and the risk neutral valuation principle has to be modified

since volatility may command a risk premium. Different approaches to this problem have

been adopted. Hull and White (1987) assume volatility risk is not priced. Wiggins (1987)

derives various specifications of volatility risk premium according to different assumptions

for risk preference. Heston (1993) provides a specification where volatility risk premium

is proportional to variance and extract this volatility risk premium from option prices in

the same manner as implied volatility is extracted. Despite the variety of approaches

adopted, consensus emerge on the degree of Black-Scholes pricing bias as a result of

stochastic volatility. In the case where volatility is stochastic and ½ = 0, Black-Scholes
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overprices near-the-money (NTM) or at-the-money (ATM) options and the degree of

overpricing increases with maturity. On the other hand, Black-Scholes underprices both

in- and out-of-the-money options. In term of implied volatility, ATM implied volatility

will be lower than actual volatility while implied volatility of far-from-the-money options

(i.e. either very high or very low strikes) will be higher than actual volatility. The

pattern of pricing bias will be much harder to predict if ½ is not zero, there is a premium

for bearing volatility risk, and if either or both values vary through time.

Some of the early work on option implied volatility focus on finding an optimal weight-

ing scheme to aggregate implied volatility of options across strikes. (See Bates (1996) for

a comprehensive survey of these weighting schemes.) Since the plot of implied volatility

against strikes can take many shapes, it is not likely that a single weighting scheme will

remove all pricing errors consistently. For this reason and together with the liquidity ar-

gument presented below, ATM option implied volatility is often used for volatility forecast

but not implied volatilities at other strikes.

3.2.3 Market microstructure and measurement errors

Early studies of option implied volatility suffered many estimation problems9 such as

the improper use of the Black-Scholes model for American style option, the omission of

dividend payments, the option price and the underlying asset prices were not recorded at

the same time, or stale prices were used. Since transactions may take place at bid or ask

prices, transaction prices of option and the underlying assets are subject to bid-ask bounce

making the implied volatility estimation unstable. Finally, in the case of S&P 100 OEX

option, the privilege of a wildcard option is often omitted.10 In more recent studies, much

of these measurement errors have been taken into account. Many studies use futures and

options futures because these markets are more active than the cash markets and hence

the smaller risk of prices being stale.

Conditions in the Black-Scholes model include no arbitrage, transaction cost is zero and

continuous trading. The lack of such a trading environment will result in option being

traded within a band around the theoretical price. This means that implied volatility

estimates extracted from market option prices will also lie within a band even without

the complications described in Sections 3.2.1 and 3.2.2. Figlewski (1997) shows that

implied volatility estimates can differ by several percentage points due to bid-ask spread
9Mayhew (1995) gives a detailed discussion on such complications involved in estimating implied

volatility from option prices, and Hentschel (2001) provides a discussion of the confidence intervals for

implied volatility estimates.
10This wildcard option arises because the stock market closes later than the option market. Option

trader is given the choice to decide, before the stock market closes, whether or not to trade on an option

whose price is fixed at an earlier closing time.
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and discrete tick size alone. To smooth out errors caused by bid-ask bounce, Harvey and

Whaley (1992) use a nonlinear regression of ATM option prices observed in a ten-minute

interval before the market close on model prices.

Indication of non-ideal trading environment is usually reflected in poor trading volume.

This means implied volatility of options written on different underlying assets will have

different forecasting power. For most option contracts, ATM option has the largest

trading volume. This supports the popularity of ATM implied volatility referred to in

Section 3.2.2.

3.2.4 Investor risk preference

In the Black-Scholes’s world, investor risk preference is irrelevant in pricing options. Given

that some of the Black-Scholes assumptions have been shown to be invalid, there is now

a model risk. Figlewski and Green (1999) simulate option writer’s positions in the S&P

500, DM/$, US LIBOR and T-Bond markets using actual cash data over a 25 year period.

The most striking result from the simulations is that delta hedged short maturity options,

with no transaction costs and a perfect knowledge of realised volatility, finished with losses

on average in all four markets. This is a clear evidence of Black-Scholes model risk. If

option writers are aware of this model risk and mark up option prices accordingly, the

Black-Scholes implied volatility will be greater than the true volatility.

In some situations, investor risk preference may override the risk neutral valuation

relationship. Figlewski (1997), for example, compares the purchase of an OTM option to

buying a lottery ticket. Investors are willing to pay a price that is higher than the fair price

because they like the potential payoff and the option premium is so low that mispricing

becomes negligible. On the other hand, we also have fund managers who are willing to buy

comparatively expensive put options for fear of the collapse of their portfolio value. Both

types of behaviour could cause market price of option to be higher than the Black-Scholes

price, translating into a higher Black-Scholes implied volatility. Arbitrage argument does

not apply here because these are unique risk preference (or aversion) associated with some

groups of individuals. Franke, Stapleton and Subrahmanyam (1998) provide a theoretical

framework in which such option trading behaviour may be analysed.

3.2.5 Option implied volatility measure and forecast

From the discussion above, we may deduce that the construction of VIX by the Chicago

Board of Options Exchange is an example of good practice. VIX, short for volatility

index, is an implied volatility composite compiled from eight options written on the S&P

100. It is constructed such that it is at-the-money (by combining just-in and just-out-of-

the-money options) and has a constant 28 calendar days to expiry (by combining the first
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nearby and second nearby options around the targeted 28 calendar days to maturity).

Eight option prices are used, including four calls and four puts, to reduce any pricing bias

and measurement errors caused by staleness in the recorded index level. Since options

written on S&P 100 are American style, a cash-dividend adjusted binomial model was

used to capture the effect of early exercise. The mid bid-ask option price is used instead

of traded price because transaction prices are subject to bid-ask bounce. (See Whaley

(1993) and Fleming, Ostdiek and Whaley (1995) for further details.) Due to the calendar

day adjustment, VIX is about 1.2 times (i.e.
p
365=252) greater than historical volatility

computed using trading day data.

Once an implied volatility estimate is obtained, it is usually scaled by
p
n to get an

n-day ahead volatility forecast. In some cases, a regression model may be used to adjust

for historical bias (e.g. Ederington and Guan (2000)), or the implied volatility may be

parameterized within a GARCH/ARFIMA model with or without its own persistence

adjustment (e.g. Day and Lewis (1992), Blair, Poon & Taylor (2001), Hwang and Satchell

(1998)).

As mentioned earlier, option implied volatility is perceived as a market’s expectation

of future volatility and hence it is a market based volatility forecast. Arguably it should

be superior than time series volatility forecast. On the other hand, we explained before

that option model based forecast requires a number of assumptions to hold for the option

theory to produce a useful volatility estimate. Moreover, option implied also suffers from

many market driven pricing irregularities detailed above. Nevertheless, as we will learn

in Section 6, option implied volatility appears to have superior forecasting capability,

out performing many historical price volatility models and matching the performance of

forecasts generated from time series models that use a large amount of high frequency

data.

4 Forecast Evaluation

Comparing forecasting performance of competing models is one of the most important

aspects of any forecasting exercise. In contrast to the efforts made in the construction

of volatility models and forecasts, little attention has been paid to forecast evaluation in

the volatility forecasting literature.

4.1 Measuring forecast errors

Ideally an evaluation exercise should measure the relative or absolute usefulness of a

volatility forecast to investors. However, to do that one needs to know the decision

process that will include these forecasts and the costs or benefits that result from using
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these forecasts. Other utility-based criterion, such as that used in West, Edison and Cho

(1993), requires some assumptions about the shape and property of the utility function.

In practice these costs, benefits and utility function are not known and it is usual to

simply use measures suggested by statisticians.

Popular evaluation measures used in the literature include Mean Error (ME), Mean

Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),

and Mean Absolute Percent Error (MAPE). Other less commonly used measures include

Mean logarithm of absolute errors (MLAE), Theil-U statistic and LINEX. Except for the

last two performance measures, all the other performance measures are self-explanatory.

Assume that the subject of interest is Xi, bXi is the forecast of Xi, and that there are N

forecasts. The Theil-U measure is:

Theil-U =

P
N

i=1

³ bXi ¡Xi´2
P
N

i=1

³ bXBM
i

¡Xi

´2 ; (9)

where bXBM

i
is the Benchmark forecast, used here to remove the effect of any scalar

transformation applied to X.

In the LINEX loss function below the positive errors are weighted differently from the

negative errors:

LINEX =
1

N

NX
i=1

h
exp

n
¡a

³ bXi ¡Xi

´o
+ a

³ bXi ¡Xi

´
¡ 1

i
: (10)

The choice of the parameter a is subjective. If a > 0, the function is approximately

linear for over-prediction and exponential for under-prediction. Granger (1999) describes

a variety of non-symmetric cost, or loss, functions of which the LINEX is an example.

Given that most investors would treat gains and losses differently, use of such functions

may be advisable, but their use is not common in the literature.

4.2 Comparing forecast errors of different models

In the special case where the error distribution of one forecasting model dominates that

of another forecasting model, the comparison is straightforward (Granger (1999)). In

practice, this is rarely the case, and most comparisons are made based on the average

figure of some statistical measures described in Section 4.1. For statistical inference,

West (1996), West and Cho (1995) and West and McCracken (1998) show how standard

errors for ME, MSE, MAE and RMSEmay be derived taking into account serial correlation

in the forecast errors and uncertainty inherent in model parameters estimates that were

used to produce the forecasts. In general, West (1996) asymptotic theory works for

recursive scheme only, where newly observed data is used to expand the estimation period.
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However, a rolling fixed estimation-period method, where the oldest data is dropped

whenever a new data is added, might be more appropriate if there is non-stationarity or

time variation in model parameters estimates.

Diebold and Mariano (1995) propose three tests for “equal accuracy” between two

forecasting models. The tests relate prediction error to some very general loss function

and analyse loss differential derived from errors produced by two competing models. The

three tests include an asymptotic test that corrects for series correlation and two exact

finite sample tests based on sign test and the Wilcoxon’s signed-rank test. Simulation

results show that the three tests are robust against non-Gaussian, nonzero mean, serially

and contemporaneously correlated forecast errors. The two sign based tests in particular

continue to work well among small samples.

Instead of striving to make some statistical inference, model performance could be

judged on some measures of economic significance. Examples of such an approach in-

clude portfolio improvement based on volatility forecasts (Fleming, Kirby, Ostdiek (2000,

2002)). Some papers test forecast accuracy by measuring the impact on option pricing

errors (Karolyi (1993)). In this case, if there is any pricing error in the option model, the

mistake in volatility forecast will be cancelled out when the option implied is re-introduced

into the pricing formula. So it is not surprising that evaluation which involves comparing

option pricing errors often prefers the implied volatility method to all other time series

methods.

What has not yet been done in the literature is to separate the forecasting period into

“normal” and “exceptional” periods. It is conceivable that different forecasting methods

are suited for different trading environment.

4.3 Regression based forecast efficiency and orthogonality test

The regression based method for examining the informational content of forecasts entails

regressing the “actual”, Xi, on the forecasts, bXi, as shown below

Xi = ®+ ¯ bXi + Àt : (11)

Conditioning upon the forecast, the prediction is unbiased only if ® = 0 and ¯ = 1.

The standard errors of the parameter estimates are often computed based on Hansen and

Hodrick (1980) since the error term, Àt, is heteroskedastic and serially correlated when

overlapping forecasts are evaluated. In cases where there are more than one forecasting

models, additional forecasts are added to the right hand side of (11) to check for incre-

mental explanatory power. Such forecast encompassing test dates back to Theil (1966).

Chong and Hendry (1986) and Fair and Shiller (1989, 1990) provide further theoretical
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exposition of such method for testing forecast efficiency. The first forecast is said to

subsume information contained in other forecasts if these additional forecasts do not sig-

nificantly increase the adjusted regression R2. Alternatively, an orthogonality test may

be conducted by regressing the residuals from (11) on other forecasts. If these forecasts

are orthogonal, i.e. do not contain additional information, then the regression coefficients

will not be different from zero.

While it is useful to have an unbiased forecast, it is important to distinguish between

biasness and predictive power. A biased forecast can have predictive power if the bias

can be corrected. An unbiased forecast is useless if forecast errors are always big. For bXi

to be considered as a good forecast, V ar (Àt) should be small and R2 for the regression

should tend to 100%. Blair, Poon and Taylor (2001) use the proportion of explained

variability, P , to measure explanatory power

P = 1¡

P³
Xi ¡

bXi

´2
P

(Xi ¡ ¹
X
)
2
: (12)

The ratio in the right hand side of (12) compares the sum of squared prediction errors

(assuming ® = 0 and ¯ = 1 in (11)) with the sum of squared variations ofXi. P compares

the amount of variations in the forecast errors with that in actual volatility. If prediction

errors are small, P is closer to 1. Given that regression model that produces (12) is

more restrictive than (11), P is likel to be smaller than conventional R2. P can even be

negative since the ratio in the right hand side of (12) can be greater than 1. A negative

P means that the forecast errors have a greater amount of variations than the actual

volatility, which is not a desirable characteristic for a well behave forecasting model.

4.4 Using squared return to proxy actual volatility

Given that volatility is a latent variable, the actual volatility X is often estimated from a

sample using equation (1) which is not entirely satisfactory when the sample size is small.

Before high frequency data becomes widely available, many researchers have resorted to

using daily squared return, calculated from market closing prices, to proxy daily volatility.

As shown in Lopez (2001), while "2
t
is an unbiased estimator of ¾2

t
, it is very imprecise

due to its asymmetric distribution. Let

Yt = ¹ + "t ; "t = ¾tzt ; (13)

and zt » N (0; 1). Then

E
£
"2
t

¯̄
©t¡1

¤
= ¾
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t
E

£
z
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¯̄
©t¡1

¤
= ¾
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t
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since z2
t
» Â2(1). However, since the median of a Â2

(1) distribution is 0.455, "2
t
<

1
2¾

2
t
more

than 50% of the time. In fact

Pr

�
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2
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2

�
1

2
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t
;
3

2
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2

t

¸¶
= Pr

�
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2

t
2

�
1

2
;
3

2

¸¶
= 0:2588 ;

which means that "
2

t
is 50% greater or smaller than ¾

2

t
by nearly 75% of the time.

Under the null hypothesis that returns in (13) is generated by a GARCH(1,1) process,

Andersen and Bollerslev (1998) show that the population R2 for the regression

"2
t
= ®+ ¯b¾

2

t
+ Àt

is equal to ,¡1 where , is the kurtosis of the standardized innovations and , is finite.

For conditional Gaussian error, the R2 from a correctly specified GARCH(1,1) model

is bounded from above by 1

3
. Christodoulakis and Satchell (1998) extend the results to

include compound normals and the Gram-Charlier class of distributions and show that the

misestimation of forecast performance is likely to be worsened by non-normality known

to present in financial data.

Hence, the use of "2
t
as volatility proxy will lead to low R

2 and undermine the inference

regarding forecast accuracy. Blair, Poon and Taylor (2001) report an increase of R2 by 3

to 4 times for the one-day ahead forecast when intra-day 5-minutes square returns instead

of daily square returns are used to proxy the actual volatility. Extra caution is called for

when interpreting empirical findings in studies that adopt such a noisy volatility estimator.

4.5 Further issues in forecast evaluation

In all forecast evaluations, it is important to distinguish in-sample and out-of-sample

forecasts. In-sample forecast, which is based on parameters estimated using all data in

the sample, implicitly assumes parameter estimates are stable through time. In practice,

time variation of parameter estimates is a critical issue in forecasting. A good forecasting

model should be one that can withstand the robustness of out-of-sample test; a test design

that is closer to reality. In our analyses of empirical findings in Sections 5 and 6, we focus

our attention only to studies that implement out-of-sample forecasts.

An issue not addressed previously is whether volatility X in (9), (10), (11) and (12)

should be standard deviation or variance? The complication generated by this choice

could be further compounded with the choice of performance measure (e.g. MAE or

MSE). The square of a variance error is the 4th power of the same error measured

from standard deviation. This can complicate the task of forecast evaluation, given the

difficulty in estimating fourth moments with common distributions let alone the thick

tailed ones in finance. The confidence interval of the mean error statistic can be very

wide when forecast errors are measured from variances and worse if they are squared.
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This leads to difficulty in finding significant differences between alternative forecasting

methods. For this reason, one may even consider using a logarithmic transformation (as

in Pagan and Schwert (1990)) to reduce the impact of outliers.

Davidian and Carroll (1987) make similar observations in their study of variance func-

tion estimation for heteroskedastic regression. Using high order theory, they show that

the use of square returns for modelling variance is appropriate only for approximately

normally distributed data, and becomes non-robust when there is a small departure from

normality. Estimation of the variance function that is based on logarithmic transforma-

tion or absolute returns is more robust against asymmetry and non-normality. More re-

cently, Andersen, Bollerslev, Diebold and Labys (2001) and Andersen, Bollerslev, Diebold

and Ebens (2001) find realized volatility estimated from high frequency currency and

stock returns are approximately lognormal. These findings are generally consistent with

X being logarithmic volatility.

Bollerslev and Ghysels (1996) further suggest a heteroskedasticity-adjusted version of

MSE called HMSE where

HMSE =
1

N

NX
t=1

"
X

T+tbX
T+t

¡ 1

#2

In this case, the forecast error is effectively scaled by actual volatility. This type of

performance measure is not appropriate if the absolute magnitude of the forecast error is

a major concern.

5 Volatility forecasting based on time series models

In this section, we review major findings in 44 papers that construct volatility forecasts

based on historical information only. We will make some references to implied volatil-

ity forecasts when we discuss forecasting performance of SV and long memory volatility

models. Main findings regarding implied volatility forecasts will be discussed in Section 6.

5.1 Pre-ARCH era and non-ARCH debate

Taylor (1987) is one of the earliest to test time series volatility forecasting models before

ARCH/GARCH permeates the volatility literature. Taylor (1987) studies the use of high,

low and closing prices to forecast 1 to 20 days DM/$ futures volatility and find a weighted

average composite forecast to perform best. Wiggins (1992) also gives support to extreme

value volatility estimators.

In the pre-ARCH era, there are many other findings covering a wide range of issues.

Dimson and Marsh (1990) find ex ante time-varying optimized weighting schemes do

not always work well in out-of-sample forecasts. Sill (1993) finds S&P 500 volatility is
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higher during recession and that commercial T-Bill spread helps to predict stock market

volatility. Alford and Boatman (1995) find, from a sample of 6,879 stocks, that adjusting

historical volatility towards volatility estimates of comparable firms in the same industry

and size provides a better 5-year ahead volatility forecast. Alford and Boatman (1995),

Figlewski (1997) and Figlewski and Green (1999) all stress the importance of having a

long enough estimation period to make good volatility forecast over a long horizon.

5.2 The explosion of ARCH/GARCH forecasting contests

Akigray (1989) is one of the earliest to test predictive power of GARCH and is commonly

cited in many GARCH studies later, although an earlier investigation has appeared in

Taylor (1986). In the following decade, there were no less than 20 papers testing GARCH

predictive power against other time series methods and against option implied volatility

forecasts. Majority of these forecast volatility of major stock indices and exchange rates.

The ARCH/GARCH models, and their variants, have many supporters. Akgiray finds

GARCH consistently outperforms EWMA and HIS (i.e. historical volatility derived from

standard deviation of past returns over a fixed interval) in all subperiods and under

all evaluation measures. Pagan and Schwert (1990) find EGARCH is best especially in

contrast to nonparametric methods. Despite a low R2, Cumby, Figlewski and Hasbrouck

(1993) conclude that EGARCH is better than naïve historical methods. Figlewski (1997)

finds GARCH superiority confines to stock market and for forecasting volatility over short

horizon only. Cao and Tsay (1992) find TAR provides the best forecast for large stocks and

EGARCH gives the best forecast for small stocks, and they suspect that the latter might

be due to a leverage effect. Bali (2000) documents the usefulness of GARCH models, the

nonlinear ones on particular, in forecasting 1-week ahead volatility of US T-Bill yields.

Other studies find no clear-cut result. These include Lee (1991), West and Cho (1995),

Brooks (1998), and McMillan, Speight and Gwilym (2000). Some models work best under

different error statistics (e.g. MAE, MSE), different sampling schemes (e.g. rolling fixed

sample estimation, or recursive expanding sample estimation), different time periods and

for different assets. Brailsford and Faff (1996) comment that the GJR-GARCH model has

a marginally lead while Franses and Van Dijk (1996) claim the GJR forecast cannot be

recommended. All these studies (and many other volatility forecasting studies) share one

or more of the following characteristics: (i) they test a large number of very similar models

all designed to capture volatility persistence, (ii) they use a large number of error statistics

each of which has a very different loss function, (iii) they forecast and calculate error

statistics for variance and not standard deviation, which makes the difference between

forecasts of different models even smaller, (iv) they use squared daily, weekly or monthly

returns to proxy daily, weekly or monthly “actual volatility”, which result in extremely
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noisy volatility estimates. The noise in the volatility estimates makes the small differences

between forecasts of similar models indistinguishable.

Unlike the ARCH class model, the “simpler” methods, including the EWMA method,

do not separate volatility persistence from volatility shocks and most of them do not

incorporate volatility mean reversion. The GJR model allows the volatility persistence

to change relatively quickly when return switches sign from positive to negative and vice

versa. If unconditional volatility of all parametric volatility models is the same, then

GJR will have the largest probability of an underforecast. The “simpler” methods tend

to provide larger volatility forecasts most of the time because there is no constraint on

stationarity or convergence to the unconditional variance, and may result in larger forecast

errors.11 This possibly explains why GJR was the worst performing model in Franses and

Van Dijk (1996) because they use MedSE (median standard error) as their sole evaluation

criteria. In Brailsford and Faff (1996), the GJR(1,1) model outperforms the other models

when MAE, RMSE and MAPE are used.

There are some merits in using “simpler” methods, and especially models that include

long distributed lags. As ARCH class models assume variance stationarity, the forecasting

performance suffers when there are changes in volatility level. Parameters estimation

becomes unstable when data period is short or when there is a change in volatility level.

This has led to GARCH convergence problem in several studies (e.g. Tse and Tung

(1992) and Walsh and Tsou (1998)). Taylor (1986), Tse (1991), Tse and Tung (1992),

Boudoukh, Richardson and Whitelaw (1997) and Walsh and Tsou (1998), Ederington and

Guan (1999), Ferreira (1999), and Taylor JW (2001) all favour some forms of exponential

smoothing method to GARCH for forecasting volatility of a wide range of assets across

equities, exchange rates and interest rates.

In general, models that allow for volatility asymmetry came out well in the forecasting

contest because of the strong negative relationship between volatility and shock. Cao and

Tsay (1992), Heynen and Kat (1994), Lee (1991) and Pagan and Schwert (1990) favour

the EGARCH model for volatility of stock indices and exchange rates, whereas Brailsford

and Faff (1996) and Taylor (2001) find GJR-GARCH to outperform GARCH in stock

indices. Bali (200) find a range of nonlinear models work well for interest rate volatility.

The fact that the sign of future return shocks is unknown could be a contributing factor

to GJR’s poorer performance in multi-step ahead forecasts. QGARCH, LSTGARCH and

STES-EAE (see Appendix for details) are asymmetry volatility models that do not require

the prediction of the sign of future return shocks and have been shown to work well.

11This characteristic is clearly evidenced in Table 2 of Brailsford and Faff (1996). The GJR(1,1) model

under-forecasts 76 (out of 90) times. The RW model has an equal chance of under- and over-forecasts,

whereas all the other methods overforecast more than 50 (out of 90) times.
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5.3 The arrival of SV forecasts

The SV model has an additional innovative term in the volatility dynamics and, hence,

is more flexible than ARCH class models and was found to fit financial market returns

better and have residuals closer to standard normal. It is also closer to theoretical models

in finance and especially those in derivatives pricing. However, largely due to the com-

putation difficulty, volatility forecast based on SV model was not studied till mid 1990’s,

a decade later than ARCH/GARCH development. In a PhD thesis, Heynen (1995) finds

SV forecast is best for a number of stock indices cross several continents. There are

only six other SV studies and the view about SV forecasting performance is by no means

unanimous at the time of writing.

Heynen and Kat (1994) forecast volatility for seven stock indices and five exchange

rates and find SV provides the best forecast for indices but produces forecast errors that

are ten times larger than EGARCH’s and GARCH’s for exchange rates. Yu (2002) ranks

SV top for forecasting New Zealand stock market volatility, but the margin is very small,

partly because the evaluation is based on variance and not standard deviation. Lopez

(2001) finds no difference between SV and other time series forecasts using conventional

error statistics. All three papers have the 1987’s crash in the in-sample period, and the

impact of the 1987 crash on the result is unclear.

Three other studies, Bluhm and Yu (2000), Dunis, Laws and Chauvin (2000) and Hol

and Koopman (2002) compare SV and other time series forecasts with option implied

volatility forecast. Dunis et.al. (2000) find combined forecast is the best for six exchange

rates so long as the SV forecast is excluded. Bluhm and Yu (2000) rank SV equal to

GARCH. Both Bluhm and Yu (2000) and Hol and Koopman (2002) conclude that implied

is better than SV for forecasting stock index volatility.

5.4 Recent development in long memory volatility models

Volatility forecasts based on models that exploit the long memory (LM) characteristics

of volatility appear rather late in the literature. These include Andersen, Bollerslev,

Diebold and Labys (2002), Vilasuso (2002), Zumbach (2002) and three other papers that

compare LM forecasts with option implied volatility, viz. Li (2002), Martens and Zein

(2002) and Pong, Shakleton, Taylor and Xu (2002). We have pointed out in Section 3.1.2

that other short memory models (e.g. extreme values, breaks, mixture of distribution,

and regime witching) are also capable of producing long memory in second moments and

each of them entails a different data generating process. At the time of writing, there is

no direct contest between these and the LM models.

An earlier LM paper by Hwang and Satchell (1998) uses LM models to forecast Black-
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Scholes implied volatility of equity option. This paper contains some useful insights about

properties of LM models, but since we are focusing on forecasting volatility of the under-

lying asset, the results of Hwang and Satchell (1998) will not be discussed here.

Examples of LM models include the FIGARCH in Baillie, Bollerslev and Mikkelsen

(1996) and FIEGARCH in Bollerslev and Mikkelsen (1996). In Andersen, Bollerslev,

Diebold and Labys (2002) a vector autoregressive model with long distributed lags was

build on realized volatility of three exchange rates, which they called the VAR-RV model.

In Zumbach (2002) the weights apply to time series of realized volatility follow a power

law, which he called the LM-ARCH model.

As noted before in Section 3.1.2, all fractional integrated models of volatility have a

non-zero drift. In practice the estimation of fractional integrated models require an arbi-

trary truncation of the infinite lags and as a result, the mean will be biased. Zumbach’s

(2002) LM-ARCH will not have this problem because of the fixed number of lags and the

way in which the weights are calculated. Hwang and Satchell’s (1998) scaled-truncated

log-ARFIMA model is mean adjusted to control for the bias that is due to this truncation

and the log transformation.

Vilasuso (2002) finds FIGARCH produces significantly better 1- and 10-day ahead

volatility forecasts for five major exchange rates. Zumbach (2002) produces only 1-day

ahead forecasts and find no difference among model performance. Andersen, Bollerslev,

Diebold and Labys (2002) find the realized volatility constructed VAR model, i.e. VAR-

RV, produces the best 1- and 10-day ahead volatility forecasts. It is difficult to attribute

this superior performance to LM model alone because the VAR structure allows a cross

series linkage that is absence in all other univariate models and we also know that the more

accurate realized volatility estimates would result in improved forecasting performance

everything else equal.

The other three papers that compare forecasts from LM models with implied volatility

forecasts generally find implied volatility forecast to produce highest explanatory power.

Martiens and Zein (2002) find log-ARFIMA forecast beats implied in S&P 500 futures but

not in =Y/US$ and crude oil futures. Li (2002) finds implied produces better short horizon

forecast whereas the ARFIMA provides better forecast for a six-month horizon. However,

when regression coefficients are constrained to be ® = 0 and ¯ = 1, the regression R2

becomes negative at long horizon. From our discussion in Section 4.3, this suggests

that volatility at the six-month horizon might be better forecast using the unconditional

variance instead of model based forecasts.

As all LM papers in this group were written very recently and after the publication

of Andersen and Bollerslev (1998), the realized volatilities are constructed from intra-

day high frequency data. When comparison is made with implied forecast, the implied
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volatility is usually extracted from daily closing option prices however. Despite the lower

data frequency, implied appears to outperform forecasts from LM models.

5.5 Regime switching models

It has long been argued that financial market reacts to large and small shocks differently

and the rate of mean reversion is faster for large shocks. Friedman and Laibson (1989),

Jones, Lamont and Lumsdaine (1998) and Ederington and Lee (2001) all provide expla-

nations and empirical support for the conjecture that volatility adjustment in high and

low volatility states follow a twin-speed process; slower adjustment and more persistent

volatility in low volatility state and faster adjustment and less volatility persistence in

high volatility state.

One approach for modelling changing volatility persistence is to use a Hamilton (1989)

type regime switching (RS) model, which like GARCH model is strictly stationary and co-

variance stationary. The TAR model used in Cao and Tsay (1992) is similar to a SV model

with regime switching, and Cao and Tsay (1992) prefers TAR to EGARCH and GARCH.

The earlier RS applications, such as Pagan and Schwert (1990) and Hamilton and Susmel

(1994) tend to be more rigid, where conditional variance is state dependent but not time

dependent. Until recently, only ARCH class conditional variance is permitted. Recent

extensions by Gray (1996) and Klaassen (1998) allow GARCH type heteroskedasticity in

each state and the probability of switching between states to be time dependent.

Hamilton and Susmel (1994) find regime switching ARCH with leverage effect pro-

duces better volatility forecast than asymmetry version of GARCH. Hamilton and Lin

(1996) use a bivariate RS model and find stock market returns are more volatile during

recession period. Gray (1996) fits a RSGARCH (1,1) model to US 1-month T-Bill rates,

where the rate of mean level reversion is permitted to differ under different regimes, and

find substantial improvement in forecasting performance. Klaassen (1998) also applies

RSGARCH (1,1) to the foreign exchange market and find a superior, though less dramatic,

performance.

It is worth noting that interest rates are different to the other assets in that interest

rates exhibit “level” effect i.e. volatility depends on the level of the interest rate. It is

plausible that it is this level effect that Gray (1996) is picking up that result in superior

forecasting performance. This level effect also appears in some European short rates

(Ferreira (1999)). There is no such level effect in exchange rates and so it is not surprising

that Klaassen (1998) does not find similar dramatic improvement.12

12We thank a referee for this important insight.
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5.6 Extreme Values and outliers

There are at least two stylized facts about volatility in the financial markets that were

not captured by ARCH models: (i) The standardized residuals from ARCH models still

display large kurtosis (see McCurdy and Morgan (1987), Milhoj (1987), Hsieh (1989) and

Baillie and Bollerslev (1989)). Conditional heteroskedasticity alone could not account

for all the tail thickness. This is true even when the Student-t distribution is used to

construct the likelihood function (see Bollerslev (1987) and Hsieh (1989)). (ii) ARCH

effect significantly reduced or disappeared once large shocks are controlled for (Aggarwal,

Inclan and Leal (1999)). Franses and Ghijsels (1999) find forecasting performance of the

GARCH model is substantially improved in 4 out of 5 stock markets studied when the

additive outliers are removed.

Diebold and Pauly (1987) and Lamoureux and Lastrapes (1990) show that the high

volatility persistence in the GARCH model could be due to structural changes in the

variance process. A shift in unconditional variance will result in volatility persistence

in GARCH that assumes covariance stationarity. Kearns and Pagan (1993) investigate

the issue if volatility persistence was an artifact of extremes or outliers by symmetrically

trimming the scores of the largest observations but find volatility persistence remained in

Australian stock index returns. On the other hand, Aggarwal, Inclan and Leal (1999) use

Inclan and Tiao (1994) method to identify and adjust for volatility level changes and find

a big difference after these level shifts are controlled for. The difference between the two

approaches is tenuous however. As the time between volatility level changes gets smaller,

the second approach converges to the first.

At the time of writing, there is no consensus about the treatment of extreme values and

outliers; whether they should simply be removed, trimmed or their impact on volatility be

separately handled. The financial market literature is also rather loose in its terminology

regarding outliers and extremes, which can lead to opaque discussions. To a statistician,

there are two extremes in each sample, the minimum and the maximum, although this

can extend to the first few ordinal statistics at each end. It follows that the number of

extremes does not increase with sample size, n. The number of terms in the 5% tail of the

distribution does increase with sample size, being 0.05n, so that tails and extremes are not

identical concepts; extremes lie in the tails but tails include data that are not extremes. Of

course, for small samples, the two sets become almost identical, but they are quite different

for large samples. Tails are part of the central distributions but for large samples true

extremes can be considered to be drawn from an extreme-value distribution. In the far tail

the two could be the same. “Outliers” could be drawn from a quite different distribution

when the market goes into a different mode, in which case the observed distribution is a
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mixture of the two. An obvious problem is that there are rather few observations from

the outlier distributions and so its estimation is difficult.

The volume-volatility literature has documented a strong link between contemporane-

ous trading volume and conditional volatility. It is plausible that residuals that are scaled

by trading volume might be approximately Gaussian. No doubt, the Christmas wish list

of volatility forecasters must be for a method of forecasting crashes, even if it is for a

short period ahead. It may be possible to find such a method using options or very high

frequency data, but a great deal of further exploration is required.

5.7 Getting the right conditional variance and forecast with the

“wrong” models

Many of the time series volatility models including the GARCH models can be thought of

as approximating a deeper time-varying volatility construction, possibly involving several

important economic explanatory variables. Since time series models involve only lagged

returns but have considered many forms of specification, it seems likely that they will

provide an adequate, possibly even a very good approximation to actuality for long periods

but not at all times. This means that they will forecast well on some occasions, but less

well on others, depending on fluctuations in the underlying driving variables.

Nelson (1992) proves that if the true process is a diffusion or near-diffusion model with

no jumps, then even when misspecified, appropriately defined sequences of ARCH terms

with a large number of lagged residuals may still serve as consistent estimators for the

volatility of the true underlying diffusion, in the sense that the difference between the

true instantaneous volatility and the ARCH estimates converges to zero in probability as

the length of the sampling frequency diminishes. Nelson (1992) shows that such ARCH

models may misspecify both the conditional mean and the dynamic of the conditional

variance; in fact the misspecification may be so severe that the models make no sense as

data generating processes, they could still produce consistent one-step-ahead conditional

variance estimates and short term forecasts.

Nelson and Foster (1995) provide further conditions for such misspecified ARCH mod-

els to produce consistent forecasts over medium- and long-term. They show that forecasts

of the process and its volatility generated by these misspecified models will converge

in probability to the forecast generated by the true diffusion or near diffusion process

provided that all unobservable state variables are consistently estimated and that the

conditional mean and conditional covariances of all state variables are correctly specified.

An example of a true diffusion process given by Nelson and Foster (1995) is the stochastic

volatility model described in Section 3.2.2.
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These important theoretical results confirm our empirical observations that under

normal circumstances, i.e. no big jumps in prices, there may be little practical difference

in choosing between volatility models provided that the sampling frequency is small and

that whichever model one has chosen, it must contains long enough lagged residuals. This

might be an explanation for the success of high frequency and long memory volatility

models (e.g. Blair, Poon and Taylor (2001) and Andersen, Bollerslev, Diebold and Labys

(2002)).

6 Volatility forecasting based on option ISD

In contrast to time series volatility forecasting models described in Section 6, the use

of option ISD (Implied Standard Deviation) as a volatility forecast involves some extra

complexities. A test on the forecasting power of option ISD is a joint test of option market

efficiency and a correct option pricing model. Since trading frictions differ across assets,

some options are easier to replicate and hedge than the others. It is therefore reasonable

to expect different levels of efficiency and different forecasting power for options written

on different assets. We will focus on this aspect of the forecasting contest in Section 6.1

and compare implied and time series volatility forecasts within each asset class.

While each historical price constitutes an observation in the sample used in calculat-

ing volatility forecast, each option price constitutes a volatility forecast over the option

maturity, and there can be many option prices at any one time. As mentioned in Section

3.2, there are are also the problem of volatility smile and volatility skew. Options of

different strike prices produce different Black-Scholes implied volatility estimates. Section

6.2 discusses the information content of ISD across strikes and the effectiveness of different

weighting schemes used to produce an implied volatility composite for forecasting.

The issue of a correct option pricing model is more fundamental in finance. Option

pricing has a long history and various extensions have been made since Black-Scholes to

cope with dividend payments, early exercise and stochastic volatility. However, none of the

option pricing models (except Heston (1993)) that appeared in the volatility forecasting

literature allows for a premium for bearing volatility risk. In the presence of a volatility

risk premium, we expect the option price to be higher which means implied volatility

derived using an option pricing model that assumes zero volatility risk premium (such as

the Black-Scholes model) will also be higher, and hence automatically be more biased.

Section 6.3 examines the issue of biasness of ISD forecasts and evaluates the extent to

which implied biasness is due to the omission of volatility risk premium.
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6.1 Predictability across different assets

As noted in Section 3.2.3, early studies that test forecasting power of option ISD are

fraught with many estimation deficiencies. Despite these complexities, option ISD has

been found empirically to contain a significant amount of information about future volatil-

ity and it often beats volatility forecasts produced by sophisticated time series models.

Such a superior performance appears to be common across assets.

6.1.1 Individual stocks

Latane and Rendleman (1976) were the first to discover the forecasting capability of

option ISD. They find actual volatilities of 24 stocks calculated from in-sample period

and extended partially into the future are more closely related to implied than historical

volatility. Chiras and Manaster (1978) and Beckers (1981) find prediction from implied

can explain a large amount of the cross-sectional variations of individual stock volatilities.

Chiras and Manaster (1978) document an R2 of 34-70% for a large sample of stock options

traded on CBOE whereas Beckers (1981) reports R2 of 13-50% for a sample that varies

from 62 to 116 U.S. stocks over the sample period. Gemmill (1986) produces R2 of 12-

40% for a sample of 13 U.K. stocks. Schmalensee and Trippi (1978) find implied volatility

rises when stock price falls and that implied volatilities of different stocks tend to move

together. From a time series perspective, Lamoureux and Lastrapes (1993) and Vasilellis

and Meade (1996) find implied could also predict time series variations of equity volatility

better than forecasts produced from time series models.

The forecast horizons of this group of studies are usually quite long ranging from 3

months to 3 years. Studies that examine incremental information content of time series

forecasts find volatility historical average provides significant incremental information in

both cross-sectional (Beckers (1981), Chiras and Manaster (1978), Gemmill (1986)) and

time series settings (Lamoureux and Lapstrapes (1993)) and that combining GARCH

and implied produces the best forecast (Vasilellis and Meade (1996)). These findings have

been interpreted as an evidence of stock option market inefficiency since option implied

does not subsume all information. In general, stock option implied exhibits instability and

suffers most from measurement errors and bid-ask spread because of the lower liquidity.

6.1.2 Stock market index

There are 22 studies that use index option ISD to forecast stock index volatility; seven of

these forecast volatility of S&P 100, ten forecast volatility of S&P 500 and the remaining

five forecast index volatility of smaller stock markets. The S&P 100 and S&P 500 fore-

casting results make an interesting contrast as almost all studies that forecast S&P 500
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volatility use S&P 500 futures options which is more liquid and less prone to measurement

errors than the OEX stock index option written on S&P 100. We will return to the issue

of measurement errors when we discuss biasness in Section 6.3.

All but one study (viz. Canina and Figlewski (1993)) conclude that implied contains

useful information about future volatility. Blair, Poon and Taylor (2001) and Poteshman

(2000) record the highest R2 for S&P 100 and S&P 500 respectively. About 50% of index

volatility is predictable up to a 4-week horizon when actual volatility is estimated more

accurately using very high frequency intra-day returns.

Similar, but less marked, forecasting performance emerged from the smaller stock

markets, which include the German, Australian, Canadian and Swedish markets. For a

small market such as the Swedish market, Frennberg and Hanssan (1996) find seasonality

to be prominent and that implied forecast cannot beat simple historical models such as the

autoregressive model and random walk. Very erratic and unstable forecasting results were

reported in Brace and Hodgson (1991) for the Australian market. Doidge and Wei (1998)

find the Canadian Toronto index is best forecast with GARCH and implied combined,

whereas Bluhm and Yu (2000) find VDAX, the German version of VIX, produces the best

forecast for the German stock index volatility.

A range of forecast horizons were tested among this group of studies though the most

popular choice is 1 month. There is evidence that the S&P implied contains more in-

formation after the 1987 crash (see Christensen and Prabhala (1998) for S&P 100 and

Ederington and Guan (2002) for S&P 500). Some described this as the “awakening” of

the S&P option markets.

About half of the papers in this group test if there is incremental information contained

in time series forecasts. Day and Lewis (1992), Ederington and Guan (1999, 2002), and

Martin and Zein (2002) find ARCH class models and volatility historical average add a

few percentage points to the R2, whereas Blair, Poon and Taylor (2001), Christensen

and Prabhala (1998), Fleming (1998), Fleming, Ostdiek and Whaley (1995), Hol and

Koopman (2002) and Szamany, Ors, Kim and Davidson (2002) all find option implied

dominates time series forecasts.

6.1.3 Exchange rate

The strong forecasting power of implied is again confirmed in the currency markets. Six-

teen papers study currency options for a number of major currencies, the most popular of

which are DM/US$ and =Y/US$. Most studies find implied to contain information about

future volatility for short horizon up to 3 months. Li (2002) and Scott and Tucker (1989)

find implied forecast well for up to a 6- to 9-months horizon. Both studies register the

highest R2 in the region of 40-50%.
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A number of studies in this group find implied beats time series forecasts including

volatility historical average (see Fung, Lie and Moreno (1990) and Wei and Frankel (1991))

and ARCH class models (see Guo (1996a, 1996b), Jorion (1995, 1996), Martens and Zein

(2002), Pong, Shackleton, Taylor and Xu (2002), Szamany, Ors, Kim and Davidson (2002)

and Xu and Taylor (1995)). Some studies find combined forecast is the best choice (see

Dunis, Law and Chauvin (2000) and Taylor and Xu (1997)).

Two studies find high frequency intra day data can produce more accurate time series

forecast than implied. Fung and Hsieh (1991) find 1-day ahead time series forecast from

a long-lag autoregressive model fitted to 15-minutes returns is better than implied. Li

(2002) finds ARFIMA model outperformed implied in long horizon forecasts while implied

dominates over shorter horizons. Implied forecasts were found to produce higher R2 than

other long memory models, such as the Log-ARFIMA model in Martens and Zein (2002)

and Pong, Shackleton, Taylor and Xu (2002). All these long memory forecasting models

are more recent and are built on volatility compiled from high frequency intra-day returns

while the implied volatility remains to be constructed from less frequent daily option

prices.

6.1.4 Other assets

The forecasting power of implied from interest rate options was tested in Edey and Elliot

(1992), Fung and Hsieh (1991) and Amin and Ng (1997). Interest rate option models are

very different other option pricing models because of the need to price the whole term

structure of interest rate derivatives consistently all at the same time in order to rule out

arbitrage opportunities. Trading in interest rate instruments is highly liquid as trading

friction and execution cost are negligible. Practitioners are more concerned about the

term structure fit than the time series fit, as million of pounds of arbitrage profits could

change hands instantly if there is any inconsistency in contemporaneous prices.

Earlier studies such as Edey and Elliot (1992) and Fung and Hsieh (1991) use the

Black model (a modified version of Black-Scholes) that prices each interest rate option

without cross referencing to prices of other interest rate derivatives. The single factor

Heath-Jarrow-Morton model used in Amin and Ng (1997) and fitted to short rate only

works in the same way although the authors have added different constraints to the short

rate dynamics as the main focus of their paper is to compare different variants of short

rate dynamics. Despite the complications, all three studies find significant forecasting

power in implied of interest rate (futures) options. Amin and Ng (1997) in particular

report R2 of 21% for 20-day ahead volatility forecasts, and volatility historical average

adds only a few percentage points to the R2.

Implied volatilities from options written on non-financial assets were examined in
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Day and Lewis (1993, crude oil), Kroner, Kneafsey and Claessens (1995, agriculture and

metals), Martens and Zein (2002, crude oil) and a recent study (Szamany, Ors, Kim

and Davidson (2002)) that covers 35 futures options contracts across 9 markets including

S&P500, interest rates, currency, energy, metals, agriculture and livestock futures. All

four studies find implied dominates time series forecasts although Kroner, Kneafsey and

Claessens (1995) find combining GARCH and implied produces the best forecast.

6.2 ATM (at-the-money) or weighted implied?

Since options of different strikes have been known to produce different implied volatilities,

a decision has to be made as to which of these implied volatilities should be used, or which

weighting scheme should be adopted, that will produce a forecast that is most superior.

The most common strategy is to choose the implied derived from ATM option based on

the argument that ATM option is the most liquid and hence ATM implied is least prone

to measurement errors. ATM implied is also theoretically most sound. Feinstein (1989a)

shows that for the stochastic volatility process described in Hull and White (1987), implied

volatility from ATM and near expiration option provides the closest approximation to the

average volatility over the life of the option provided that volatility risk premium is either

zero or a constant. This means that if volatility is stochastic, ATM implied is least prone

to bias as well compared with implied at other strikes.

If ATM implied is not available, then NTM (nearest-to-the-money) option is used

instead. Sometimes, to reduce measurement errors and the effect of bid-ask bounce, an

average is taken from a group of NTM implied volatilities. VIX described in Section

3.2.5, for example, is an average of eight implied volatilities derived from four calls and

four puts and a weighting scheme that aim to produce a composite implied that is of a

constant maturity of 28 calendar days and approximately ATM. Other weighting schemes

that also give greater weight to ATM implied are vega (i.e. the partial derivative of option

price w.r.t. volatility) weighted or trading volume weighted, weighted least square (WLS)

and some multiplicative versions of the these three. The WLS method, first appeared

in Whaley (1982), aims to minimize the sum of squared errors between the market and

the theoretical prices of a group of options. Since ATM option has the highest trading

volume and ATM option price is the most sensitive to volatility input, all three weighting

schemes (and the combinations thereof) have the effect of placing the greatest weight on

ATM implied. Other less popular weighting schemes include equally weighted, and weight

based on the elasticity of option price to volatility.

The forecasting power of individual and composite implied volatilities has been tested

in Ederington and Guan (2000), Fung, Lie and Moreno (1990), Gemmill (1986), Kroner,

Kneafsey and Classens (1995), Scott and Tucker (1989) and Vasilellis and Meade (1996).
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The general consensus is that among the weighted implied volatilities, those that have a

VIX style composite weight seem to be the best, followed by schemes that favour ATM

option such as the WLS and the vega weighted implied. The worst performing ones are

equally weighted and elasticity weighted implied using options across all strikes. Different

findings emerged as to whether an individual implied forecasts better than a composite

implied. Becker (1981) Feinstein (1989b), Fung, Lie and Moreno (1990) and Gemmill

(1986) find evidence to support individual implied although they all prefer a different

implied (viz. ATM, Just-OTM, OTM and ITM respectively for the four studies). Kroner,

Kneafsey and Clasessens find composite implied forecasts better than ATM implied. On

the other hand, Scott and Tucker (1989) conclude that when emphasis is placed on ATM

implied, which weighting scheme one chooses does not really matter.

As mentioned in the Section 6.1.1, implied volatility, especially that of stock option,

can be quite unstable across time. Beckers (1981) finds taking a 5-day average improves

forecasting power of stock option implied. Hamid (1998) finds such an intertemporal av-

eraging is also useful for stock index option during very turbulent periods. On a slightly

different note, Xu and Taylor (1995) find implied estimated from sophisticated volatil-

ity term structure model produces similar forecasting performance as implied from the

shortest maturity option.

A series of studies by Ederington and Guan have reported some interesting findings.

Ederington and Guan (1999) report that information content of implied volatility of S&P

500 futures options exhibits a frown shape across strikes with options that are NTM

and have moderately high strike (i.e. OTM calls and ITM puts) possess the largest

information content with R2 equal to 17% for calls and 36% for puts. In a follow-on paper,

Ederington and Guan (2000) find that using regression coefficients that are produced from

in-sample regression of forecast against realised volatility is very effective in correcting

implied forecasting bias. They also find that after such a bias correction, there is little to

be gained from averaging implied across strikes. This means that ATM implied together

with a bias correction scheme could be the simplest, and yet the best, way forward.

Findings in Ederington and Guan (1999, 2000) raise a very profound issue in finance.

So far the volatility forecasting literature has been relying heavily on ATM implied. Im-

plied from option that are far away from ATM were found to be bad forecasts and are

persistently biased. This reflects a crucial fact that we have not yet found an option

pricing model that is capable of pricing far-from-the-money option accurately and con-

sistently. Although this is a tremendously important issue in finance, it is a research

question different from the one we are addressing here, and we shall leave it as a challenge

for future research.
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6.3 Implied biasness

Usually, forecast unbiasedness is not an overriding issue in any forecasting exercise. Fore-

cast bias can be estimated and corrected if the degree of bias remains stable through

time. However, biasness in implied volatility can have a more serious undertone since it

means option might be over- or under-priced which can only be a result of an incorrect

option pricing model or an inefficient option market. Both deficiencies have important

implications in finance.

As mentioned in Section 4.3, testing for biasness is usually carried using regression

equation (11), where bXi =
bXt is the implied forecast of period t volatility. For a forecast

to be unbiased, one would require ® = 0 and ¯ = 1. Implied forecast is upwardly biased

if ® > 0 and ¯ = 1, or ® = 0 and ¯ > 1. In the case where ® > 0 and ¯ < 1, which is

the most common scenario, implied under-forecasts low volatility and over-forecasts high

volatility.

It has been argued that implied bias will persist only if it is difficult to perform

arbitrage trades that may remove the mispricing. This is more likely in the case of stock

index option and less likely for futures options. Stocks and stock options are traded in

different markets. Since trading of a basket of stocks is cumbersome, arbitrage trades

in relation to a mispriced stock index option may have to be done indirectly via index

futures. On the other hand, futures and futures options are traded alongside each other.

Trading in these two contracts are highly liquid. Despite these differences in trading

friction, implied biasness is reported in both the S&P 100 OEX market (Canina and

Figlewski (1993), Christensen and Prabhala (1998), Fleming, Ostdiek & Whaley (1995)

and Fleming (1998)) and the S&P 500 futures options market (Feinstein (1989b) and

Ederington and Guan (1999, 2002)).

Biasness is equally widespread among implied volatilities of currency options (see Guo

(1996b), Jorion (1995), Li (2002), Scott and Tucker (1989) and Wei and Frankel (1991)).

The only exception is Jorion (1996) who cannot reject the null hypothesis that the 1-day

ahead forecasts from implied are unbiased. The five studies listed earlier use implied to

forecast exchange rate volatility over a much longer horizon from one to nine months.

Unbiasness of implied forecast was not rejected in the Swedish market (Frennberg

and Hansson (1996)) though we already know from Section 6.1.2 that the forecasting

power of implied is not very strong anyway in this small stock market. Unbiasness of

implied forecast was rejected for UK stock options (Gemmill (1986)), US stock options

(Lamoureux and Lastrapes (1993)), options and futures options across a range of assets

in Australia (Edey and Elliot (1992)) and for 35 futures options contracts traded over 9

markets ranging from interest rate to livestock futures (Szakmary, Ors, Kim and Davidson
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(2002)). On the other hand, Amin and Ng (1997) find the hypothesis that ® = 0 and

¯ = 1 cannot be rejected for the Eurodollar futures options market.

Where unbiasness was rejected, the bias in all but two cases is due to ® > 0 and ¯ < 1.

These two exceptions are Fleming (1998) who reports ® = 0 and ¯ < 1 for S&P 100 OEX

options, and Day and Lewis (1993) who find ® > 0 and ¯ = 1 for distant term oil futures

options contracts.

Christensen and Prabhala (1998) argue that implied is biased because of error-in-

variable caused by measurement errors described in Section 3.2.3. Using last period

implied and last period historical volatility as instrumental variables to correct for these

measurement errors, Christensen and Prabhala (1998) find unbiasness cannot be rejected

for implied of S&P 100 OEX option. Ederington and Guan (1999, 2002) find bias in S&P

500 futures options implied also disappeared when similar instrument variables were used.

It has been suggested to us that implied biasness could not have been caused by model

misspecification or measurement errors because this has relatively small effects for ATM

options, which is used in most of the studies that report implied biasness. In addition,

the clientele effect cannot explain the bias either because it only affects OTM options.

Research now turns to volatility risk premium as an explanation.13

Poteshman (2000) finds half of the bias in S&P 500 futures options implied was re-

moved when actual volatility was estimated with a more efficient volatility estimator

based on intra-day 5-minutes returns. The other half of the bias was almost completely

removed when a more sophisticated and less restrictive option pricing model, i.e. the He-

ston (1993) model, was used. The Heston model allows volatility to be stochastic similar

to the Hull-While model used in Guo (1996b) and Lamoureux and Lastrapes (1993)) who

both report implied biasness. But unlike the Hull-White model, the Heston model also

allows the market price of risk to be non-zero.

Further research on option volatility risk premium is currently underway in Benzoni

(2001) and Chernov (2001). Chernov (2001) finds, similar to Poteshman (2000), when im-

plied volatility is discounted by a volatility risk premium and when the errors-in-variables

problems in measures of historical and realized volatility are removed, the unbiasness of

VIX cannot be rejected over the sample period from 1986 to 2000. The volatility risk

premium debate continues if we are able to predict the magnitude and the variations of

the volatility premium and if implied from an option pricing model that permits a non-

zero market price of risk will outperform time series models when all forecasts (including

forecasts of volatility risk premium) are made in an ex ante manner.

13We thank a referee for this important insight.
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7 Where next?

The volatility forecasting literature is still very active. Many more new results are

expected in the near future. There are several areas where future research could seek

to improve upon. First is the issue about forecast evaluation and combining forecasts of

different models. It will be useful if statistical tests were conducted to test if the forecast

errors from Model A are significantly smaller, in some sense, than those from Model B,

and so on for all pairs. Even if Model A is found to be better than all the other models,

the conclusion is NOT one should henceforth forecast volatility with Model A and ignore

the other models as it is very likely that a linear combination of all the forecasts will be

superior. To find the weights one can either run a regression of empirical volatility (the

quantity being forecast) on the individual forecasts, or as approximation just use equal

weights. Testing the effectiveness of a composite forecast is just as important as testing

the superiority of the individual models, but this has not been done more often and across

different data sets.

A mere plot of any measure of volatility against time will show the familiar “volatility

clustering” which indicates some degree of forecastibility. The biggest challenge lies in

predicting changes in volatility. If implied volatility is agreed to be the best performing

forecast, on average, this is in agreement with general forecast theory, which emphasizes

the use of a wider information set than just the past of the process being forecast. Implied

volatility uses option prices and so potentially the information set is richer. What needs

further consideration is if all of its information is now being extracted and if it could still

be widened to further improve forecast accuracy especially that of long horizon forecast.

To achieve this we need to understand better the cause of volatility (both historical and

implied). Such an understanding will help to improve time series methods, which are the

only viable methods when options, or market based forecast, are not available.

Closely related to the above is to understand the source of volatility persistence and

the volume-volatility research appears to be promising in providing a framework in which

volatility persistence may be closely scrutinized. The Mixture of Distribution Hypothesis

(MDH) proposed by Clark (1973), the link between volume-volatility and market trading

mechanism in Tauchen and Pitts (1983), and the empirical findings of the volume-volatility

relationship surveyed in Karpoff (1987) are useful starting points. Given that Lamoureux

and Lastrapes (1990) find volume to be strongly significant when it is inserted into the

ARCH variance process, while returns shocks become insignificant, and that Gallant,

Rossi and Tauchen (1993) find conditioning on lagged volume substantially attenuates

the “leverage” effect, the volume-volatility research may lead to a new and better way for

modelling returns distributions. To this end, Andersen (1996) puts forward a generalised
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framework for the MDH where the joint dynamics of returns and volume are estimated,

and reports a significant reduction in the estimated volatility persistence. Such a model

may be useful for analyzing the economic factors behind the observed volatility clustering

in returns but such a line of research has not yet been pursued vigorously.

There are many old issues that have been around for a long time. These include

consistent forecasts of interest rate volatilities that satisfies the no-arbitrage relationship

across all interest rate instruments, more tests on the use of absolute returns models in

comparison with squared returns models in forecasting volatility, a multivariate approach

to volatility forecasting where cross correlation and volatility spillover may be accommo-

dated, etc.

There are many new adventures that are currently underway as well.14 These include

the realized volatility approach noticeably driven by Andersen, Bollerslev, Diebold and

various co-authors, the estimation and forecast of volatility risk premium described in

Section 6.3, the use of spot and option price data simultaneously (e.g., Chernov and Ghy-

sels (2000)), and the use of Bayesian and other methods to estimate stochastic volatility

models (e.g. Jones (2001)), etc.

It is difficult to envisage in which direction volatility forecasting research will flourish

in the next five years. If, within the next five years, we can cut the forecast error by

half and remove the option pricing bias in ex ante forecast, this will be a very good

achievement indeed. Producing by then forecasts of large events will also be worthwhile.

8 Summary and conclusion

This survey has concentrated on two questions: is volatility forecastable? If it is, which

method will provide the best forecasts? To consider these questions, a number of basic

methodological viewpoints need to be discussed, mostly about the evaluation of forecasts.

What exactly is being forecast? Does the time interval (the observation interval) matter?

Are the results similar for different speculative markets? How does one measure predictive

performance?

Volatility forecasts are classified in this section as belonging in one of the following

four categories:

² HISVOL; for historical volatility, which include random walk, historical averages of

squared returns, or absolute returns. Also included in this category are time series

models based on historical volatility using moving averages, exponential weights, au-

toregressive models, or even fractionally integrated autoregressive absolute returns,

14We thank a referee for these suggestions.
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for example. Note that HISVOL models can be highly sophisticated. The mul-

tivariate VAR realised volatility model in Andersen, Bollerslev, Diebold and Labys

(2002) is classified here as a ‘HISVOL’ model. All models in this group model

volatility directly omitting the goodness of fit of the returns distribution or any

other variables such as option prices.

² GARCH; any member of the ARCH, GARCH, EGARCH, and so forth family are

included.

² ISD; for option implied standard deviation, based on the Black-Scholes model and

various generalizations.

² SV; for stochastic volatility model forecasts.

The survey of papers includes 93 studies, but 25 of them did not involve comparisons

between methods from at least two of these groups, and so were not helpful for comparison

purposes.

The following table involves just pair-wise comparisons. Of the 66 studies that were

relevant, some compared just one pair of forecasting techniques, other compared several.

For those involving both HISVOL and GARCH models, 22 found HISVOL better at

forecasting than GARCH (56% of the total), and 17 found GARCH superior to HISVOL

(44%). The full table is:

Number of Studies Studies Percentage

HISVOL > GARCH 22 56%

GARCH > HISVOL 17 44%

HISVOL > ISD 8 24%

ISD > HISVOL 26 76%

GARCH > ISD 1 6

ISD > GARCH 17 94

SV > HISVOL 3

SV > GARCH 3

GARCH > SV 1

ISD > SV 1

The combination of forecasts has a mixed picture. Two studies find it to be helpful

but another does not.
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The overall ranking suggests that ISD provides the best forecasting with HISVOL

and GARCH roughly equal, although possibly HISVOL does somewhat better in the

comparisons. The success of the implied volatility should not be surprising as these

forecasts use a larger, and more relevant, information set than the alternative methods as

they use option prices. They are also less practical, not being available for all assets.

Among the 93 papers, 17 studies compared alternative version of GARCH. It is clear

that GARCH dominates ARCH. In general, models that incorporate volatility asym-

metry such as EGARCH and GJR-GARCH, perform better than GARCH. But certain

specialized specifications, such as fractionally integrated GARCH (FIGARCH) and regime

switching GARCH (RSGARCH) do better in some studies. However, it seems clear that

one form of study that is included is conducted just to support a viewpoint that a par-

ticular method is useful. It might not have been submitted for publication if the required

result had not been reached. This is one of the obvious weaknesses of a comparison such as

this; the papers being reported are being prepared for different reasons, use different data

sets, many kinds of assets, various intervals between readings, and a variety of evaluation

techniques. Rarely discussed is if one method is significantly better than another. Thus,

although a suggestion can be made that a particular method of forecasting volatility is the

best, no statement is available about the cost-benefit from using it rather than something

simpler or how far ahead the benefits will occur.

Financial market volatility is clearly forecastable. The debate is on how far ahead

could one accurately forecast and to what extent could volatility changes be predicted.

This conclusion does not violate market efficiency since accurate volatility forecast is not

in conflict with underlying asset and option prices being correct. The option implied

volatility being a market based volatility forecast has been shown to contain most in-

formation about future volatility. The supremacy among historical time series models

depends on the type of asset being modelled. But, as a rule of thumb, historical volatil-

ity methods work equally well compared with more sophisticated ARCH class and SV

models. Better reward could be gained by making sure that actual volatility is measured

accurately. These are broad brush conclusions omitting the fine details which we outline

in this documents. Because of the complex issues involved and the importance of volatil-

ity measure, volatility forecasting will continue to remain as a specialist subject and be

studied vigorously.
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Appendix A: Historical Price Volatility Models

A.1 Prediction models build on sample standard devi-

ations

Volatility, ¾t, in this section is the sample standard deviation of period t returns, and b¾t

is the forecast of ¾t. If t is a month, then ¾t is often calculated as the sample standard

deviation of all daily returns in the month. For a long time, ¾t is proxied by daily squared

return if t is a day. More recently and with the availability of high frequency data, daily

¾t is derived from the cumulation of intra-day returns.

Random Walk (RW)

b¾t = ¾t¡1 (14)

Historical Average (HA)

b¾t = (¾t¡1 + ¾t¡2 + ¢ ¢ ¢+ ¾1) = (t ¡ 1) (15)

Moving Average (MA)

b¾t = (¾t¡1 + ¾t¡2 + ¢ ¢ ¢+ ¾t¡¿ ) = (¿) (16)

Exponential Smoothing (ES)

b¾t = (1¡ ¯) ¾t¡1 + ¯b¾t¡1 and 0 � ¯ � 1 (17)

Exponentially Weighted Moving Average (EWMA)

b¾t =

¿X
i=1

¯i ¾t¡i

,
¿X

i=1

¯i : (18)

EWMA is a truncated version of ES with a finite ¿ .

Smooth Transition Exponential Smoothing (STES)

b¾t = ®t¡1"
2

t¡1
+ (1¡®t¡1) b¾

2

t¡1

®t¡1 =

1

1 + exp (¯ + °Vt¡1)
(19)

where Vt¡1 is the transition variable; Vt¡1 = "t¡1 for STES-E, Vt¡1 = j"t¡1j for STES-AE

and Vt¡1 is a function of both "t¡1 and j"t¡1j for STES-EAE.

Simple Regression (SR)

b¾t = °
1; t¡1 ¾t¡1 + °

2; t¡1 ¾t¡2 + ¢ ¢ ¢ (20)

Threshold autoregressive (TAR)

b¾t = Á
(i)
0 + Á

(i)
1 ¾t¡1 + ¢ ¢ ¢+ Á

(i)
p ¾t¡p; i = 1; 2; : : : ; k (21)
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A.2 ARCH class conditional volatility models

For all models described in this section, returns, rt, has the following process

rt = ¹+ "t

"t =

p
htzt

and ht follows one of the following ARCH class models.

ARCH (q)

ht = ! +

qX

k=1

®k"
2

t¡k (22)

where ! > 0 and ®k ¸ 0.

GARCH (p, q)

ht = ! +

qX

k=1

®k"
2

t¡k +

pX

j=1

¯jht¡j (23)

where ! > 0. (See Nelson and Cao (1992) for constraint on ®k and ¯j.) For finite

variance,
P

®k +
P

¯j < 1.

EGARCH (p, q)

lnht = ®0 +

qX

j=1

¯j lnht¡j (24)

+

pX

k=1

®k

"
/Ã

t¡k
+ °

Ã¯̄
Ã
t¡k

¯̄
¡

�
2

¼

¶1

2

!#

Ã
t
= ¹

t

.p
ht

TGARCH (1,1) or GJR-GARCH (1,1)

ht = ! + ®"2
t¡1

+ ±Dt¡1"
2

t¡1
+ ¯ht¡1 (25)

Dt¡1 =

8<
:

1 if "t¡1 < 0

0 if "t¡1 ¸ 0

QGARCH (1,1)

ht = ! + ® ("t¡1 ¡ °)2 + ¯ht¡1 (26)

STGARCH (Smooth Transition GARCH)

ht = ! + (1¡ F ("t¡1))®"
2

t¡1
+ F ("t¡1) ±"

2

t¡1
+ ¯ht¡1 (27)

where

F ("t¡1) =
1

1 + exp (¡/"t¡1)
for logistic STGARCH,
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F ("t¡1) = 1 + exp
¡
¡/"

2

t¡1

¢
for exponential STGARCH,

GARCH(1,1) regime switching

ht; St¡1
= !St¡1

+®St¡1
"
2

t¡1
+ ¯

St¡1
ht¡1; St¡1

(28)

where St indicate the state of regime at time t.

CGARCH(1,1) (Component GARCH)

ht = !t +®1

¡
"
2

t¡1
¡ !t¡1

¢
+ ¯

1
(ht¡1 ¡ !t¡1) (29)

!t = ! + ½!t¡1 + »
¡
"
2

t¡1
¡ ht¡1

¢

where !t represents a time-varying trend or permanent component in volatility which is

driven by volatility prediction error
¡
"
2

t¡1
¡ ht¡1

¢
and is integrated if ½ = 1.

A.3 Stochastic volatility model

Stochastic Volatility (SV)

rt = ¹+ "t

"t = zt exp (0:5ht)

ht = ! + ¯h2
t¡1

+ Àt (30)

Àt may or may not be independent of zt.
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Author(s) 

 
Asset(s) 

Data 
Period 

Data 
Freq 

Forecasting 
methods & rank 

Forecasting 
horizon 

Evaluation &  
R-square 

 
Comments 

 

- 1 - 

1. Akigray (1989) CRSP VW & 
EW indices 

Jan63-Dec86 
(Pre-crash) 
Split into 4 
subperiods of 6 
years each. 

D GARCH(1,1) 
ARCH(2) 
EWMA 
HIS 
(ranked) 

20 days ahead 
estimated from rolling 
4 years data. Daily 
returns used to 
construct “actual vol”; 
adjusted for serial 
correlation. 

ME, RMSE, MAE, 
MAPE 

GARCH is least biased and produced 
best forecast especial in periods of high 
volatility and when changes in volatility 
persist. 
Heteroskedasticity is less string in low 
frequency data and monthly returns are 
approximately Normal. 

2. Alford and 
Boatman 
(1995) 

6879 stocks 
listed in 
NYSE/ASE & 
NASDAQ 

12/66 – 6/87 W, M “Shrinkage” forecast 
(HIS adjusted 
towards 
comparable firms) 

HIS 
Median HIS vol of 

“comparable” firm 
(ranked) 

5 years starting from 6 
months after firm’s 
fiscal year 

MedE, MedAE To predict 5-year monthly volatility one 
should use 5 years worth of weekly or 
monthly data. Adjusting historical 
forecast using industry and size 
produced best forecast. 

3. Amin and Ng 
(1997) 

3M Eurodollar 
futures & 
futures options 

1/1/88 – 1-/11/92 D Implied American All Call+Put 
(WLS, 5 variants of 
the HJM model) 

HIS 
(ranked) 

20 days ahead 
(1 day ahead forecast 
produced from in-
sample with lag 
implied in 
GARCH/GJR not 
discussed here.) 

R2 is 21% for 
implied and 24% 
for combined. 
H0:α implied=0, 
β implied=1 cannot 
be rejected with 
robust SE. 

Interest rate models that incorporate 
volatility term structure (e.g. Vasicek) 
perform best.  Interaction term capturing 
rate level and volatility contribute 
additional forecasting power. 

4. Andersen and 
Bollerslev 
(1998) 

DM/$, ¥/$ In: 1/10/87–
30/9/92 

Out: 1/10/92-
30/9/93 

D 
(5 min) 

GARCH(1,1) 
 

1 day ahead, use 5-
min returns to 
construct “actual vol” 

R2 is 5 to 10% for 
daily squared 
returns, 50% for 5-
min square returns. 

R2 increases monotonically with sample 
frequency. 

5. Andersen, 
Bollerslev, 
Diebold and 
Labys (2002) 

¥/US$, 
DM/US$ 
Reuters FXFX 
quotes  

1/12/86 – 30/6/99 
 
In: 1/12/86-

1/12/96, 10 
years 

Out: 2/12/96 – 
30/6/99, 2.5 
years 

Tick 
(30min) 

VAR-RV, AR-RV, 
FIEGARCH-RV 

GARCH-D, RM-D, 
FIEGARCH-D 

VAR-ABS 
(ranked) 

1 and 10 days ahead.  
“Actual vol” derived 
from 30-min returns. 

1-day ahead R2 
ranges between 27-
40% (1-day ahead) 
and 20-33% (10-
day ahead). 

RV is realised volatility, D is daily 
return, and ABS is daily absolute return. 
VAR allows all series to share the same 
fractional integrated order and cross 
series linkages.  Forecast improvement 
is largely due to the use of high 
frequency data (and realised volatility) 
instead of the model(s). 
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Author(s) 

 
Asset(s) 

Data 
Period 

Data 
Freq 

Forecasting 
methods & rank 

Forecasting 
horizon 

Evaluation &  
R-square 

 
Comments 

 

- 2 - 

6. Andersen, 
Bollerslev and 
Lange (1999) 

DM/US$ 
Reuters quotes 

1/12/86 – 30/11/96 
 
In:  
1/10/87-30/9/92 

5 min GARCH(1,1) at 5-min, 
10-min, 1-hr, 8-hr, 
1-day, 5-day, 20-
day interval. 

1, 5 and 20 days 
ahead, use 5-min 
returns to construct 
“actual vol” 

RMSE, MAE, 
HRMSE, HMAE, 
LL 

HRMSE and HMAE are 
heteroskedasticity adjusted error 
statistics; LL is the logarithmic loss 
function.  High frequency returns and 
high frequency GARCH(1,1) models 
improve forecast accuracy. But, for 
sampling frequencies shorter than 1 
hour, the theoretical results and forecast 
improvement break down. 

7. Bali (2000) 3-, 6-, 12-
month T-Bill 
rates 

8/1/54 – 25/12/98 W NGARCH 
GJR, TGARCH 
AGARCH, QGARCH 
TSGARCH 
GARCG 
VGARCH 
Constant vol (CKLS) 
(ranked, forecast both 

level and volatility) 

1 week ahead. Use 
weekly interest rate 
absolute change to 
proxy “actual vol”. 

R2 increases from 
2 %to 60% by 
allowing for 
asymmetries, level 
effect and 
changing volatility. 

CKLS: Chan, Karolyi, Longstaff and 
Sanders (1992). 

8. Beckers (1981) 62 to 116 
Stocks options 
 
 
 
 
 
 
 
 
 
 
 
50 stock option 

28/4/75 – 21/10/77 
 
 
 
 
 
 
 
 
 
 
 
 
4 dates: 18/10/76, 
24/1/77, 18/4/77, 
18/7/77 

D 
 
 
 
 
 
 
 
 
 
 
 
 

D 
(from 
Tick) 

FBSD 
Implied ATM call, 5 days ave 
Implied vega call, 5 days ave 
RW last quarter 
(ranked, both implieds 

are 5-day average 
because of large 
variations in daily 
stock implied.) 

 
 
 
 
TISDvega 
Implied ATM call, 1 days ave 
(ranked) 

Over option’s maturity 
(3 months), 10 non-
overlapping cycles.  
Use sample SD of 
daily returns over 
option maturity to 
proxy “actual vol”. 
 
 
 
 
 
 
ditto 

MPE, MAPE. 
Cross sectional R2 
ranges between 34-
70% across models 
and expiry cycles.  
FBSD appears to 
be least biased 
with α =0, β =1.  
α >0, β <1 for the 
other two implieds. 
 
 
 
Cross sectional R2 
ranges between 27-
72% across models 
and expiry cycles.   

FBSD: Fisher Black’s option pricing 
service takes into account stock vol tend 
to move together, mean revert, leverage 
effect and implied can predict future.  
ATM, based on vega WLS, outperforms 
vega weighted implied, and is not 
sensitive to ad hoc dividend adjustment. 
Incremental information from all 
measures suggests option market 
inefficiency.  Most forecasts are 
upwardly biased as actual vol was on a 
decreasing trend. 
 
TISD: Single intra-day transaction data 
that has the highest vega. The 
superiority of TISD over implied of 
closing option prices suggest significant 
non-simultaneity and bid-ask spread 
problems. 

9. Bera and 
Higgins (1997) 

Daily SP500, 
Weekly $/£, 
Monthly US 

Ind Prod 

SP 1/1/88-28/5/93 
$/£ 12/12/85-

28/2/91 
IndProd 1/60–3/93 

D 
W 
M 

GARCH 
Bilinear model 
(ranked) 

One step ahead. 
Reserve 90% of data 
for estimation 

Cox MLE 
RMSE 
(LE: logarithmic 
error) 

Consider if heteroskedasticity is due to 
bilinear in level.  Forecasting results 
show strong preference for GARCH. 
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10. Blair, Poon & 
Taylor (2001) 

S&P 100 (VIX) 2/1/87 to 31/12/99 
 
Out: 
4/1/93-31/2/99 

Tick Implied VIX  
GJR 
HIS100  
(ranked) 

1, 5, 10 and 20 days 
ahead estimated using 
a rolling sample of 
1,000 days.  Daily 
actual volatility is 
calculated from 5-min 
returns. 

1-day ahead R2 is 
45% for VIX, and 
50% for combined. 
VIX is downward 
biased in out-of-
sample period. 

Using squared returns reduces R2 to 
36% for both VIX and combined. 
Implied volatility has its own 
persistence structure.  GJR has no 
incremental information though 
integrated HIS vol can almost match IV 
forecasting power. 

11. Bluhm and Yu 
(2000) 

German DAX 
stock index and 
VDAX the 
DAX volatility 
index 

In 1/1/88-28/6/96 
Out 1/7/66-30/6/99 

D Implied VDAX 
GARCH(-M), SV 
EWMA, EGARCH, 

GJR,  
HIS 
(approx ranked) 

45 calendar days, 1, 
10 and 180 trading 
days.  “Actual” is the 
sum of daily squared 
returns. 

MAPE, LINEX Ranking varies a lot depend on forecast 
horizons and performance measures. 

12. Boudoukh, 
Richardson and 
Whitelaw 
(1997) 

3-month US 
T-bill 

1983-1992 D EWMA, MDE 
GARCH(1,1), HIS 
(ranked) 

1 day ahead based on 
150-day rolling period 
estimation. Realized 
volatility is the daily 
squared changes 
averaged across t+1 to 
t+5. 

MSE & regression. 
MDE has the 
highest R2 while 
EWMA has the 
smallest MSE  

MDE is multivariate density estimation 
where volatility weights depend on 
interest rate level and term spread. 
EWMA and MDE have comparable 
performance and are better than HIS and 
GARCH. 

13. Brace and 
Hodgson 
(1991) 

Futures option 
on Australian 
Stock Index 

(Marking to 
market is 
needed for 
this options) 

1986-87 D HIS 5, 20, 65 days 
Implied NTM call, 20-75 days  
(ranked) 

20 days ahead.  Use 
daily returns to 
calculate standard 
deviations. 

Adj R2 are 20% 
(HIS), 17% (HIS+ 
implied).   All 
α >0 & sig. some 
uni regr coeff are 
sig negative (for 
both HIS & 
implied). 

Large fluctuations of R2 from month to 
month.  Results could be due to the 
difficulty in valuing futures style 
options. 

14. Brailsford and 
Faff (1996) 

Australian 
Statex-
Actuaries 
Accumulation 
Index for top 
56 

1/1/74 – 30/6/93 
 
In: Jan74-Dec85 
Out: Jan86-Dec93 

(include 87’s 
crash period) 

D GJR, 
Regr, HIS, GARCH, 

MA, EWMA, 
RW, ES 
(rank sensitive to error 

statistics) 

1 month ahead. 
Models estimated 
from a rolling 12-year 
window. 

ME, MAE, RMSE, 
MAPE, and a 
collection of 
asymmetric loss 
functions 

Though the ranks are sensitive, some 
models dominate others; MA12 >MA5 
and Regr>MA> EWMA>ES.  GJR 
came out quite well but is the only 
model that always underpredict. 

15. Brooks (1998) DJ Composite 17/11/78–30/12/88 
 
Out: 17/10/86-

30/12/88 

D RW, HIS, MA, ES, 
EWMA, AR, GARCH, 
EGARCH, GJR, 
Neural network 
(all about the same) 

1 day ahead squared 
returns using rolling 
2,000 observations for 
estimation. 

MSE, MAE of 
variance, % over-
predict. R2 is 
around 4% 
increases to 24% 
for pre-crash data 

Similar performance across models 
especially when 87’s crash is excluded.  
Sophisticated models such as GARCH 
and neural net did not dominate. 
Volume did not help in forecasting 
volatility. 
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16. Canina and 
Figlewski 
(1993) 

S&P 100 
(OEX) 

15/3/83 – 28/3/87 
(Pre-crash) 

D HIS 60 calendar days 
Implied Binomial Call 
(ranked) 
 
Implied in 4 maturity 
gp, each subdivided 
into 8 intrinsic gp. 

7 to 127 calendar days 
matching option 
maturity, overlapping 
forecasts with Hansen 
std error. Use sample 
SD of daily returns to 
proxy “actual vol”. 

Combined R2 is 
17% with little 
contribution from 
implied. All 
α implied>0, 
β implied<1 with 
robust SE. 

Implied has no correlation with future 
volatility and does not incorporate info 
contained in recently observed 
volatility.  Results appear to be peculiar 
for pre-crash period.  Time horizon of 
“actual vol” changes day to day.  
Different level of implied aggregation 
produces similar results. 

17. Cao and Tsay 
(1992) 

Excess returns 
for S&P, VW 
EW indices 

1928-1989 M TAR 
EGARCH(1,0) 
ARMA(1,1) 
GARCH(1,1) 
(ranked) 

1 to 30 months. 
Estimation period 
ranges from 684 to 
743 months 

MSE, MAE 
 
Daily returns used 
to construct “actual 
vol”. 

TAR provides best forecasts for large 
stocks. EGARCH gives best long-
horizon forecasts for small stocks (may 
be due to Leverage effect).  Difference 
in MAE can be as large as 38%. 

18. Chiras and 
Manaster 
(1978) 

All stock 
options from 
CBOE 

23 months from 
Jun73 – Apr75 

M Implied (weighted by 
price elasticity) 

HIS20 monthss 
(ranked) 

20 month ahead. Use 
SD of 20 monthly 
returns to proxy 
“actual vol”. 

Cross sectional R2 
of implied ranges 
13-50% across 23 
months.  HIS adds 
0-15% to R2. 

Implied outperformed HIS especially in 
the last 14 months.  Find implied 
increases and better behave after 
dividend adjustments and evidence of 
mispricing possibly due to the use 
European pricing model on American 
style options. 

19. Christensen 
and Prabhala 
(1998) 

S&P 100 
(OEX) 
 
Monthly expiry 
cycle 

Nov83 - May95  M Implied BS ATM 1-month Call 
HIS18 days  
(ranked) 

Non-overlapping 24 
calendar (or 18 
trading) days.  Use SD 
of daily returns to 
proxy “actual vol”. 

R2 of log var are 
39% (implied), 
32% (HIS) and 
41% (combined). 
α <0 (because of 
log), β <1 with 
robust SE. Implied 
is more biased 
before the crash. 

Not adj for dividend and early exercise. 
Implied dominates HIS.  HIS has no 
additional information in subperiod 
analysis.  Proved that results in Canina 
& Figlewski (1993) is due to pre-crash 
characteristics and high degree of data 
overlap relative to time series length.  
Implied is unbiased after controlling for 
measurement errors using impliedt-1 and 
HISt-1.  

20. Christoffersen 
and Diebold 
(2000) 

4 stk indices 
4 ex rates 
US 10 year 
T-Bond 

1/1/73 - 1/5/97 D No model. 
(No rank; Evaluate 

volatility 
forecastibility (or 
persistence) by 
checking interval 
forecasts.) 

1 to 20 days Run tests and 
Markov transition 
matrix eigenvalues 
(which is basically 
1st-order serial 
coefficient of the 
hit sequence in the 
run test). 

Equity & FX: forecastibility decrease 
rapidly from 1 to 10 days.  Bond: may 
extend as long as 15 to 20 days.  
Estimate bond returns from bond yields 
by assuming coupon equal to yield. 
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21. Cumby, 
Figlewski and 
Hasbrouck 
(1993) 

¥/$, stocks(¥, 
$), bonds (¥, $) 

7/77 to 9/90 W EGARCH 
HIS 
(ranked) 

1 week ahead, 
estimation period 
ranges from 299 to 
689 weeks. 

R2 varies from 
0.3% to 10.6%. 

EGARCH is better than naïve in 
forecasting volatility though R-square is 
low. Forecasting correlation is less 
successful.  

22. Day and Lewis 
(1992) 

S&P 100 OEX 
option 
 
Reconstructed 
S&P 100 

Out: 11/11/83 – 
31/12/89 

 
In: 2/1/76 – 

11/11/83 

W Implied BS Call (shortest 
but > 7 days, 
volume WLS) 

HIS1 week 
GARCH 
EGARCH 
 (ranked) 

1 week ahead 
estimated from a 
rolling sample of 410 
observations.  Use 
sample variance of 
daily returns to proxy 
weekly “actual vol”. 

R2 of variance regr 
are 2.6% (implied) 
& 3.8% (encomp).  
All forecasts add 
marginal info.  H0: 
α implied=0, 
β implied=1 cannot 

be rejectedwith 
robust SE. 

Omit early exercise.  Effect of 87’s 
crash is unclear.  When weekly squared 
returns were used to proxy “actual vol”, 
R2 increase and was max for HIS 
contrary to expectation (9% compared 
with 3.7% for implied). 

23. Day and Lewis 
(1993) 

 

Crude oil 
futures options 
 
Crude oil 
futures 

14/11/86 – 18/3/91 
 
 
8/4/83 – 18/3/91 
coincide with 
Kuwait invasion 
by Iraq in second 
half of sample. 

D Implied Binomial ATM Call 
HIS forecast horizon 

GARCH-M 
EGARCH-AR(1) 
(ranked) 

Option maturity of 4 
nearby contracts, 
(average 13.9, 32.5, 
50.4 & 68 trading days 
to maturity). 
Estimated from rolling 
500 observations. 

ME, RMSE, MAE. 
R2 of variance regr 
are 72%(short mat) 
and 49% (long 
maturity). With 
robust SE α  > 0 
for short and α =0 
for long, β =1 for 

all maturity. 

Implied performed extremely well. 
Performance of HIS and GARCH are 
similar. EGARCH much inferior. Bias 
adjusted and combined forecasts do not 
perform as well as unadjusted implied.  
GARCH has no incremental 
information. 
Result likely to be driven by Kuwait 
invasion by Iraq. 

24. Dimson and 
Marsh (1990) 

UK FT All 
Share 

1955-89 Q 
 

ES, Regression 
RW, HA, MA 
(ranked) 

Next quarter. Use 
daily returns to 
construct “actual vol”. 

MSE, RMSE, 
MAE, RMAE 

Recommend exponential smoothing and 
regression model using fixed weights. 
Find ex ante time-varying optimization 
of weights does not work well ex post. 

25. Doidge and 
Wei (1998) 

Toronto 35 
stock index & 
European 
options 

In 2/8/88-31/12/91 
Out: 1/92-7/95 

D Combine3 
Combine2 
GARCH 
EGARCH 
HIS100 days 
Combine1 
Implied BS Call+Put (All 

maturities>7days, 
volume WLS)  

(ranked) 

1 month ahead from 
rolling sample 
estimation. No 
mention on how 
“actual vol” was 
derived. 

MAE, MAPE, 
RMSE 

Combine1 equal weight for GARCH 
and implied forecasts. Combine2 
weighs GARCH and implied based on 
their recent forecast accuracy.  
Combine3 puts implied in GARCH 
conditional variance. Combine3 was 
estimated using full sample due to 
convergence problem; so not really out-
of-sample forecast.. 
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26. Dunis, Laws 
and Chauvin 
(2000) 

DM/¥, £/DM, 
£/$, $/CHF, 
$/DM, $/¥ 

In: 2/1/91-27/2/98 
Out: 2/3/98-

31/12/98 

D GARCH(1,1) 
AR(10)-Sq returns 
AR(10)-Abs returns 
SV(1) in log form 
HIS 21 or 63 trading days 
1- & 3-M forward 

Implied ATM quotes  
Combine 
Combine (except SV) 
(rank changes across 

currencies and 
forecast horizons) 

1 and 3 months (21 & 
63 trading days) with 
rolling estimation.  
Actual volatility is 
calculated as the 
average absolute 
return over the 
forecast horizon. 

RMSE, MAE, 
MAPE, Theil-U, 
CDC (Correct 
Directional 
Change index) 

No single model dominates though SV 
is consistently worst, and implied 
always improves forecast accuracy. 
Recommend equal weight combined 
forecast excluding SV. 
 

27. Ederington and 
Guan (1999) 
“Frown” 

S&P500 
futures options 

1Jan88-30Apr98 D Implied BK 16Calls 16 Puts 
HIS40 days  
(ranked) 

Overlapping 10 to 35 
days matching 
maturity of nearest to 
expiry option. Use SD 
of daily returns to 
proxy “actual vol”. 

Panel R2 19% and 
individual R2 
ranges 6-17% 
(calls) and 15-36% 
(puts).  Implied is 
biased & 
inefficient, 
α implied>0 and 
β implied<1 with 
robust SE. 

Information content of implied across 
strikes exhibit a frown shape with 
options that are NTM and have 
moderately high strikes possess largest 
information content.  HIS typically adds 
2-3% to the R2 and nonlinear implied 
terms add another 2-3%. Implied is 
unbiased & efficient when measurement 
error is controlled using Implied t-1 and 
HIS t-1. 

28. Ederington and 
Guan (2000) 
“Forecasting 
Volatility” 

5 DJ Stocks 
S&P 500 
3m Euro$ rate 
10y T-Bond 

yield 
DM/$ 

2/7/62-30/12/94 
2/7/62-29/12/95 
1/1/73-20/6/97 
2/1/62-13/6/97 
 
1/1/71-30/6/97 

D GW MAD  
GWSTD,  
GARCH, EGARCH 
AGARCH 
HISMAD,n , HISSTD,n 
(ranked, error statistics 

are close; GW MAD 
leads consistently 
though with only 
small margin.) 

n=10, 20, 40, 80 & 
120 days ahead 
estimated from a 
1260-day rolling 
window; parameters 
re-estimated every 40 
days.  Use daily 
squared deviation to 
proxy “actual” vol. 

RMSE, MAE GW: geometric weight, MAD: mean 
absolute deviation, STD: standard 
deviation. 
Volatility aggregated over a longer 
period produces a better forecast. 
Absolute returns models generally 
perform better than square returns 
models (except GARCH>AGARCH).  
As horizon lengthens, no procedure 
dominates.  GARCH & EGARCH 
estimations were unstable at times. 
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29. Ederington and 
Guan (2000) 
“Averaging” 

S&P500 
futures options 

In 4/1/88-31/12/91 
 
Out:  
2/1/92-31/12/92 

D Implied*: 99%, VIX 
HIS40 trading days 
Implied: VIX>Eq4 
Implied: WLS>vega> 

Eq32>elasticity 
 (ranked) 

Overlapping 10 to 35 
days matching 
maturity of nearest to 
expiry option. Use SD 
of daily returns to 
proxy “actual vol”. 

RMSE, MAE, 
MAPE 
 
‘*’ indicates 
individual implieds 
were corrected for 
biasness first 
before averaging 
using in-sample 
regr on realised.   

VIX: 2calls+2puts, NTM weighted to 
get ATM. Eq4/32: calls+puts equally 
weighted. WLS, vega and elasticity are 
other weighting scheme. 99% means 1% 
of regr error used in weighting all 
implieds.  Once the biasness has been 
corrected using regr, little is to be 
gained by any averaging in such a 
highly liquid S&P500 futures market. 

30. Ederington and 
Guan (2002) 
“Efficient 
Predictor” 

S&P500 
futures options 

1/1/83 – 14/9/95 D Implied Black 4NTM  
GARCH, HIS40 days 
(ranked) 
 
 

Overlapping option 
maturity 7-90, 91-180, 
181-365 and 7-365 
days ahead. Use 
sample SD over 
forecast horizon to 
proxy “actual vol”. 

R2 ranges 22-12% 
from short to long 
horizon. Post 87’s 
crash R2 nearly 
doubled.  Implied 
is efficient biased; 
α implied>0 and 
β implied<1 with 
robust SE. 

GARCH parameters were estimated 
using whole sample.  GARCH and HIS 
add little to 7-90 day R2.  When 87’s 
crash was excluded HIS add sig 
explanatory power to 181-365 day 
forecast.  When measurement errors 
were controlled using implied t-5 and 
implied t+5 as instrument variables 
implied becomes unbiased for the whole 
period but remains biased when crash 
period was excluded. 

31. Edey and Elliot 
(1992) 

Futures options 
on A$ 90d-Bill, 
10yr bond, 
Stock index 
 
 
A$/US$ 
options 

Futures options: 
inception to 12/88 
 
 
 
 
A$/US$ option: 
12/84 – 12/87 

W 
 
 
 
 
 

W 

Implied BK NTM,call  
Implied BK NTM,put  
 
(No rank, 1 call and 1 
put, selected based on 
highest trading 
volume) 

Option maturity up to 
3M. Use sum of 
(return square plus 
Implied t+1) as “actual 
vol” 
 
Constant 1M. Use sum 
of weekly squared 
returns to proxy 
“actual vol”. 

Regression (see 
comment). In most 
cases α implied>0 
and β implied<1 
with robust SE. 
For stock index 
option β implied=1 
cannot be rejected 
using robust SE. 

R2 cannot be compared with other 
studies because of the way “actual” is 
derived and lagged squares returns were 
added to the RHS. 

32. Engle, Ng and 
Rothschild 
(1990) 

1 to 12 months 
T-Bill returns, 
VW index of 
NYSE & 
AMSE stocks 

Aug 64 – Nov 85 M 1-Factor ARCH 
Univariate ARCH-M 
(ranked) 

1 month ahead 
volatility and risk 
premium of 2 to 12 
months T-Bills  

Model fit Equally weighted bill portfolio is 
effective in predicting (i.e. in an 
expectation model) volatility and risk 
premia of individual maturities. 
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33. Feinstein 
(1989) 

S&P 500 
futures options 
(CME) 

Jun83 – Dec88 Option 
expiry 
cycle 

Implied: 
Alanta > average > 

vega >elasticity 
Just-OTMCall > P+C > Put 
HIS20 days  
(ranked, note pre-crash 

rank is very 
different and 
erratic) 

23 non-overlapping 
forecasts of 57, 38 and 
19 days ahead.  Use 
sample SD of daily 
returns over the option 
maturity to proxy 
“actual vol”. 

MSE, MAE, ME.  
T-test indicates all 
ME>0 (except 
HIS) in the post 
crash period which 
means implied was 
upwardly biased. 

Alanta: 5-day average of Just-OTM call 
implied using exponential weights.  In 
general Just-OTM Implied call is the best. 

34. Ferreira (1999) French & 
German 
interbank 1M 
mid rate 

In: Jan81 – Dec89 
Out: Jan90– Dec97 
 
(ERM crises: 
Sep92-Sep93) 

W 
 

ES, HIS26, 52, all 
GARCH(-L) 
(E)GJR(-L) 
(rank varies between 

French & German 
rates, sampling 
method and error 
statistics.) 

1 week ahead. Use 
daily squared rate 
changes to proxy 
weekly volatility. 

Regression, MPE, 
MAPE, RMSPE. 
R2 is 41% for 
France and 3% for 
Germany. 

L: interest rate level, E: exponential. 
French rate was very volatile during 
ERM crises.  German rate was 
extremely stable in contrast.  Although 
there are lots of differences between the 
two rates, best models are non-
parametric; ES (French) and simple 
level effect (German). Suggest a 
different approach is needed for 
forecasting interest rate volatility.  

35. Figlewski 
(1997) 

S&P 500 
3M US T-Bill 
20Y T-Bond 
DM/$ 
 
S&P 500 
3M US T-Bill 
20Y T-Bond 
DM/$ 

1/47 – 12/95 
1/47 – 12/95 
1/50 – 7/93 
1/71 – 11/95 
 
2/7/62 – 29/12/95 
2/1/62 – 29/12/95 
2/1/62 – 29/12/95 
4/1/71 – 30/11/95 

M 
 
 
 
 

D 

HIS 6, 12, 24, 36, 48, 60m  
GARCH(1,1) for S&P 

and bond yield. 
(ranked) 
 
GARCH(1,1) 
HIS 1, 3, 6, 12, 24, 60 months 
(S&P’s rank, reverse 
for the others) 

6, 12, 24, 36, 48, 60 
months.  Use daily 
returns to compute 
“actual vol”. 
 
1, 3, 6, 12, 24 months 

RMSE 
 
 
 
 
RMSE 

Forecast of volatility of the longest 
horizon is the most accurate.  HIS uses 
the longest estimation period is the best 
except for short rate.   
 
GARCH is best for S&P but gave worst 
performance in all the other markets.  In 
general, as out of sample horizon 
increases, the in sample length should 
also increase. 

36. Figlewski & 
Green (1999) 

S&P 500 
US LIBOR 
10 yr T-Bond 

yield 
DM/$ 

1/4/71-12/31/96 
Out: From Feb96 
 
 
 
 
 
1/4/71-12/31/96 
Out: From Jan92 

D 
 
 
 
 
 
 

M 

His  3, 12, 60 months  
ES 
(rank varies) 
 
 
 
 
His  26, 60, all months 
ES 
(ranked) 
 

1, 3, 12 months for 
daily data. 
 
 
 
 
 
24 & 60 months for 
monthly data. 

RMSE ES works best for S&P (1-3 month) and 
short rate (all three horizon). HIS works 
best for bond yield, exchange rate and 
long horizon S&P forecast. The longer 
the forecast horizon, the longer th 
estimation period.  
 
For S&P, bond yield and DM/$, it is 
best to use all available “monthly” data. 
5 years worth of data works best for 
short rate. 
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37. Fleming (1998) S&P 100 
(OEX) 

10/85 - 4/92 
(All observations 
that overlap with 
87’s crash were 
removed) 

D Implied FW ATM calls  

Implied FW ATM puts 
(Both implieds are 
WLS using all 
ATM options in the 
last 10 minutes 
before market 
close) 

ARCH/GARCH 
HISH-L 28 days 

(ranked) 

Option maturity 
(shortest but > 15days, 
average 30 calendar 
days), 1 and 28 days 
ahead.  Use daily 
square return 
deviations to proxy 
“actual vol”. 

R2 is 29% for 
monthly forecast 
and 6% for daily 
forecast. All 
α implied=0, 
β implied<1 with 
robust SE for the 
last two fixed 
horizon forecasts. 

Implied dominates. All other variables 
related to volatility such as stock 
returns, interest rate and parameters of 
GARCH do not possess information 
incremental to that contained in implied. 

38. Fleming, Kirby 
and Ostdiek 
(2000) 

S&P 500, T-
Bond and gold 
futures 

3/1/83 – 31/12/97 D Exponentially 
weighted var-cov 
matrix 

Daily rebalanced 
portfolio 

Sharpe ratio 
(portfolio return 
over risk) 

Efficient frontier of volatility timing 
strategy plotted above that of fixed 
weight portfolio. 

39. Fleming, 
Ostdiek & 
Whaley (1995) 

S&P 100 (VIX) Jan86-Dec92 D, W Implied VIX  
HIS20 days  
(ranked) 

28 calendar (or 20 
trading) day.  Use 
sample SD of daily 
returns to proxy 
“actual vol”. 

R2 increased from 
15% to 45% when 
crash is excluded. 
α VIX=0, β VIX<1 
with robust SE. 

VIX dominates HIS, but is biased 
upward up to 580 basis point.  
Orthogonality test rejects HIS when 
VIX is included.  Adjust VIX forecasts 
with average forecast errors of the last 
253 days helps to correct for biasness 
while retaining implied’s explanatory 
power. 

40. Franses & 
Ghijsels (1999) 

Dutch, 
German, 
Spanish and 
Italian stock 
market returns 

1983-94 W AO-GARCH (GARCH 
adjusted for 
additive outliers 
using the ‘less-one’ 
method) 

GARCH 
GARCH-t 
(ranked) 

1 week ahead 
estimated from 
previous 4 years.  Use 
weekly squared 
deviations to proxy 
“actual vol”. 

MSE & MedSE Forecasting performance significantly 
improved when parameter estimates are 
not influenced by ‘outliers’.  
Performance of GARCH-t is 
consistently much worse.  Same results 
for all four stock markets.  

41. Franses and 
Van Dijk 
(1996) 

Stock indices 
(Germany, 
Netherlands, 
Spain, Italy, 
Sweden) 

1986-94 W QGARCH 
RW 
GARCH 
GJR 
(ranked) 

1 week ahead 
estimated from rolling 
4 years. Use weekly 
squared deviations to 
proxy “actual vol”. 

MedSE QGARCH is best if data has no 
extremes.  RW is best when 87’s crash 
is included.  GJR cannot be 
recommended. Results are likely to be 
influenced by MedSE that penalize 
nonsymmetry.  Brailsford and Faff 
(1996) support GJR as best model 
although it underpredicts over 70% of 
the time. 
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42. Frennberg and 
Hansson (1996) 

VW Swedish 
stock market 
returns 
 
Index option 
(European 
style) 

In: 1919-1976 
Out: 1977-82, 

1983-90 
 
Jan87-Dec90 

M AR 12 (ABS)-S 
RW, Implied BS ATM Call 

(option maturity 
closest to 1 month) 

GARCH-S, ARCH-S 
(ranked) 
 
Models that are not adj 
for seasonality did not 
perform as well. 

1 month ahead 
estimated from 
recursively re-
estimated expanding 
sample. Use daily ret 
to compile monthly 
vol, adjusted for 
autocorrelation. 

MAPE, R2 is 2-7% 
in first period and 
11-24% in second, 
more volatile 
period. H0: 
α implied=0 and 
β implied=1 cannot 

be rejected wust 
SE. 

S: seasonality adjusted. RW model 
seems to perform remarkably well in 
such a small stock market where returns 
exhibit strong seasonality.  Option was 
introduced in 86 and covered 87’s crash; 
outperformed by RW.   ARCH/GARCH 
did not perform as well in the more 
volatile second period. 

43. Fung, Lie and 
Moreno (1990) 

£/$, C$/$, 
FFr/$, DM/$, 
¥/$ & SrFr/$ 
options on 
PHLX 

1/84 - 2/87 
(Pre crash) 

D Implied OTM>ATM 
Implied vega, elasticity 
Implied equal weight 
HIS40 days, Implied ITM  
(ranked, all implied are 
from calls.) 

Option maturity; 
overlapping periods. 
Use sample SD of 
daily returns over 
option maturity to 
proxy “actual vol”. 

RMSE, MAE of 
overlapping 
forecasts. 

Each day, 5 options were studied; 1 
ATM, 2 just in and 2 just out.  Define 
ATM as S=X, OTM marginally 
outperformed ATM.  Mixed together 
implied of different contract months. 

44. Fung and Hsieh 
(1991) 

S&P 500, 
DM/$ 
US T-bond  
 
Futures and 
futures options 

3/83 - 7/89  
(DM/$ futures 
from 26 Feb 85) 

D 
(15min) 

RV-AR(n) 
Implied BAW NTM Call/ Put  

RV, RW(C-t-C) 
HL 
(ranked, some of the 

differences are 
small) 

1 day ahead. Use 15-
min data to construct 
“actual vol”. 

RMSE and MAE 
of log σ  

RV: Realised vol from 15-min returns. 
AR(n): autoregressive lags of order n.  
RW(C-t-C): random walk forecast based 
on close to close returns.  HL: 
Parkinson’s daily high-low method. 
Impact of 1987 crash does not appear to 
be drastic possibly due to taking log. In 
general, high frequency data improves 
forecasting power greatly.  

45. Gemmill 
(1986) 

13 UK stocks 
LTOM options. 
 
Stock price 

May78 - Jul83 
 
 
Jan78-Nov83 

M 
 
 

D 

Implied ITM  
Implied ATM, vega WLS  
Implied equal, OTM, elasticity  
HIS 20 weeks 
(ranked, all implied are 

from calls.) 

13-21 non-overlapping 
option maturity (each 
average 19 weeks). 
Use sample SD of 
weekly returns over 
option maturity to 
proxy “actual vol”. 

ME, RMSE, MAE 
aggregated across 
stocks and time. R2 
are 6-12% (pooled) 
and 40% (panel 
with firm specific 
intercepts).  All 
α >0, β <1. 

Adding HIS increases R2 from 12% to 
15%. But ex ante combined forecast 
from HIS and Implied ITM turned out to 
be worst then individual forecasts.  
Suffered small sample and 
nonsynchroneity problems and omitted 
dividends. 
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46. Gray (1996) US 1M T-Bill 1/70 – 4/94 W RSGARCH with time 
varying probability 

GARCH 
Constant Variance 
(ranked) 

1 week ahead (model 
not re-estimated). Use 
weekly squared 
deviation to proxy 
volatility. 

R2 calculated 
without constant 
term, is 4 to 8% for 
RSGARCH, 
negative for some 
CV and GARCH. 
Comparable 
RMSE and MAE 
between GARCH 
& RSGARCH. 

Volatility follows GARCH and CIR 
square root process. Interest rate rise 
increases probability of switching into 
high volatility regime. 
 
Low volatility persistence and strong 
rate level mean reversion at high 
volatility state. At low volatility state, 
rate appears random walk and volatility 
is highly persistence. 

47. Guo (1996a)  PHLX US$/¥ 
options 

Jan91 – Mar93 D Implied Heston 
Implied HW 
Implied BS 
GARCH 
HIS60  
(ranked) 

Information not 
available. 

Regression with 
robust SE. No 
information on R2 
and forecast 
biasness. 

Use mid of bid-ask option price to limit 
‘bounce’ effect.  Eliminate 
‘nonsynchroneity’ by using 
simultaneous exchange rate and option 
price. HIS and GARCH contain no 
incremental information. Implied Heston 
and Implied HW are comparable and are 
marginally better than Implied BS. Only 
have access to abstract. 

48. Guo (1996b) PHLX US$/¥, 
US$/DM 
options 
 
Spot rate 

Jan86 – Feb93 Tick 
 
 
 

D 

Implied HW (WLS, 0.8 
<S/X< 1.2, 
20<T<60 days) 

GARCH(1,1) 
HIS 60 days 
(ranked) 

60 days ahead. Use 
sample variance of 
daily returns to proxy 
actual volatility. 

US$/DM R2 is 4, 3, 
1%for the three 
methods. (9, 4, 1% 
for US$/¥:) All 
forecasts are 
biased α >0, β <1 
with robust SE. 

Conclusion same as Guo(1996a).  Use 
Barone-Adesi/Whaley approximation 
for American options. No risk premium 
for volatility variance risk.  GARCH has 
no incremental information.  Visual 
inspection of figures suggests implied 
forecasts lagged actual. 

49. Hamid (1998) S&P 500 
futures options 

3/83 – 6/93 D 13 schemes (including 
HIS, Implied cross 
strike average and 
intertemporal 
averages) 

(ranked, see comment) 

Non-overlapping 15, 
35 and 55 days ahead 

RMSE, MAE Implied is better than historical and 
cross strike averaging is better than 
intertemporal averaging (except during 
very turbulent periods). 

50. Hamilton and 
Lin (1996) 

Excess stock 
returns (S&P 
500 minus T-
bill) & Ind 
Production 

1/65 – 6/93 M Bivariate RSARCH 
Uivariate RSARCH 
GARCH+L 
ARCH+L 
AR(1) 
(ranked) 

1 month ahead. Use 
squared monthly 
residual returns to 
proxy volatility. 

MAE Found economic recessions drive 
fluctuations in stock returns volatility. 
“L” denotes leverage effect. RS model 
outperformed ARCH/GARCH+L. 
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51. Hamilton and 
Susmel (1994) 

NYSE VW 
stock index 

3/7/62 - 29/12/87 W RSARCH+L 
GARCH+L 
ARCH+L 
(ranked) 

1, 4 and 8 weeks 
ahead.  Use squared 
weekly residual 
returns to proxy 
volatility. 

MSE, MAE, 
MSLE, MALE.  
Errors calculated 
from variance and 
log variance. 

Allowing up to 4 regimes with t 
distribution.  RSARCH with leverage 
(L) provides best forecast.  Student-t is 
preferred to GED and Gaussian. 

52. Harvey and 
Whaley (1992) 

S&P 100 
(OEX) 

Oct85 - Jul89 D Implied ATM calls+puts 
(American 
binomial, shortest 
maturity>15 days) 

(Predict changes in 
implied.) 

1 day ahead implied 
for use in pricing next 
day option. 

R2 is  15% for calls 
and 4% for puts 
(excluding 1987 
crash) 

Implied volatility changes are 
statistically predictable, but market was 
efficient, as simulated transactions 
(NTM call and put and delta hedged 
using futures) did not produce profit. 

53. Heynen and 
Kat (1994) 

 

7stock indices 
and 5 exchange 
rates 

1/1/80-31/12/92 
 
In: 80-87 
Out: 88-92 
 
(87’s crash 
included in in-
sample) 

D SV(?) 
EGARCH 
GARCH 
RW 
(ranked, see also 

comment) 

Non-overlapping 5, 
10, 15, 20, 25, 50, 75, 
100 days horizon with 
constant update of 
parameters estimates.  
Use sample standard 
deviations of daily 
returns to proxy 
“actual vol”. 

MedSE SV appears to dominate in index but 
produces errors that are 10 times larger 
than (E)GARCH in exchange rate.  The 
impact of 87’s crash is unclear.  
Conclude that volatility model 
forecasting performance depends on the 
asset class. 

54. Hol and 
Koopman 
(2002) 

S&P 100 (VIX) 2/1/86 – 29/6/2001  
 
Out: Jan97 – Jun01 

D SIV 
SVX+  
SV 
(ranked) 

1,2, 5, 10, 15 and 20 
days ahead.  Use 10-
min returns to 
construct “actual vol”. 

R2 ranges 
between17 to 33%, 
MSE, MedSE, 
MAE. α  and β  
not reported. All 
forecasts 
underestimate 
actuals. 

SVX is SV with implied VIX as an 
exogenous variable while SVX+ is SVX 
with persistence adjustment.  SIV is 
stochastic implied with persistence 
parameter set equal to zero. 

55. Hwang and 
Satchell (1998) 

LIFFE stock 
options 

23/3/92 – 7/10/96 
 
240 daily out-of-
sample forecasts. 

D Log-ARFIMA-RV 
Scaled truncated 
Detrended 
unscaled truncated 

MAopt n=20-IV 
Adj MAopt n=20-RV 
GARCH-RV 
(ranked, forecast 

implied) 

1, 5, 10, 20, …, 90, 
100, 120 days ahead 
IV estimated from a 
rolling sample of 778 
daily observations.  
Different estimation 
intervals were tested 
for robustness. 

MAE, MFE. Forecast impliedATM BS of shortest 
maturity option (with at 15 trading days 
to maturity).  Build MA in IV and 
ARIMA on log (IV).  Error statistics for 
all forecasts are close except those for 
GARCH forecasts.  The scaling in Log-
ARFIMA-RV is to adjust for Jensen 
inequality. 
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56. Jorion (1995) DM/$,  
¥/$,  
SrFr/$ futures 
options on 
CME 

1/85 – 2/92 
7/86 – 2/92 
3/85 – 2/92 

D Implied ATM BS call+put 
GARCH (1,1), MA20 
(ranked) 

1 day ahead & option 
maturity.  Use squared 
returns and aggregate 
of square returns to 
proxy actual volatility. 

R2 is 5% (1-day) or 
10-15% (option 
maturity).  With 
robust SE, α implied 

>0 and β implied<1 
for long horizon 
and is unbiased for 
1-day forecasts. 

Implied is superior to the historical 
methods and least biased. MA and 
GARCH provide only marginal 
incremental information. 

57. Jorion (1996) DM/$ futures 
options on 
CME 

Jan85-Feb92 D ImpliedBlack, ATM 
GARCH(1,1) 
(ranked) 

1 day ahead, use daily 
squared to proxy 
actual volatility. 

R2 about 5%. H0: 
α implied=0, 
β implied=1 cannot 
be rejected with 
robust SE. 

R2 increases from 5% to 19% when 
unexpected trading volume is included.  
Implied volatility subsumed information 
in GARCH forecast, expected futures 
trading volume and bid-ask spread. 

58. Karolyi (1993) 74 stock 
options 

13/1/84 - 11/12/85 M Bayesian Implied Call 
Implied Call  
HIS20,60 
(Predict option price 

not “actual vol”.) 

20 days ahead 
volatility. 

MSE Bayesian adjustment to implied to 
incorporate cross sectional information 
such as firm size, leverage and trading 
volume useful in predicting next period 
option price. 

59. Klaassen 
(1998) 

US$/£, 
US$/DM and 
US$/¥ 

3/1/78 – 23/7/97 
 
Out: 20/10/87-
23/7/97 

D RSGARCH 
RSARCH 
GARCH(1,1) 
(ranked) 

1 and 10 days ahead. 
Use mean adjusted 1- 
and 10-day return 
squares to proxy 
actual volatility. 

MSE of variance, 
regression though 
R2 is not reported. 

GARCH(1,1) forecasts are more 
variable than RS models.  RS provides 
statistically significant improvement in 
forecasting volatility for US$/DM but 
not the other exchange rates. 

60. Kroner, 
Kneafsey and 
Claessens 
(1995) 

Futures options 
on Cocoa, 
cotton, corn, 
gold, silver, 
sugar, wheat 
 
Futures prices 

Jan87 - Dec90 
(Kept last 40 
observations for 
out of sample 
forecast) 
 
Jan87 – Jul91 

D GR>COMB 
Implied BAW Call 

(WLS>AVG>ATM) 
HIS 7 weeks > GARCH 
(ranked)) 

225 calendar day (160 
working days) ahead, 
which is longer than 
average. 

MSE, ME GR: Granger and Ramanathan (1984)’s 
regression weighted combined forecast, 
COMB: lag implied in GARCH 
conditional variance equation. 
Combined method is best suggests 
option market inefficiency. 

61. Lamoureux and 
Lastrapes 
(1993) 

Stock options 
for 10 non-
dividend 
paying stocks 
(CBOE) 

19/4/82-31/3/84 D Implied Hull-White NTM Call 

(intermediate term 
to maturity, WLS) 

HISupdated expanding estimate 
GARCH 
(ranked, based on 

regression result) 

90 to 180 days 
matching option 
maturity estimated 
using rolling 300 
observations and 
expanding sample. 
Use sample variance 
of daily returns to 
proxy “actual vol”. 

ME, MAE, RMSE.  
Average implied is 
lower than actual 
for all stocks. R2 
on variance varies 
between 3-84% 
across stocks and 
models. 

Implied volatility is best but biased. HIS 
provides incremental info to implied 
and has the lowest RMSE.  When all 
three forecasts are included; α >0,  
1> β implied>0, β GARCH=0, β HIS<0 with 
robust SE. Plausible explanations 
include option traders overreact to 
recent volatility shocks, and volatility 
risk premium is non-zero and time 
varying.   
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62. Latane and 
Rendleman 
(1976) 

24 stock 
options from 
CBOE 

5/10/73 – 28/6/74 W Implied vega weighted 
HIS4 years 
(ranked) 

In-sample forecast and 
forecast that extend 
partially into the 
future. Use weekly 
and monthly returns to 
calculate actual 
volatility of various 
horizons. 

Cross-section 
correlation 
between volatility 
estimates for 38 
weeks and a 2-year 
period. 

Used European model on American 
options and omitted dividends.  
“Actual” is more correlated (0.686) with  
“Implied” than HIS volatility (0.463) 
Highest correlation is that between 
implied and actual standard deviations 
which were calculated partially into the 
future. 

63. Lee (1991) $/DM, $/£, $/¥, 
$/FFr, $/C$ 
(Fed Res 
Bulletin) 

7/3/73-4/10/89 
 
Out: 21Oct81 – 
11Oct89. 

W 
(Wed, 
12pm) 

Kernel (Gaussian, 
Truncated) 

Index (combining 
ARMA and 
GARCH) 

EGARCH (1,1) 
GARCH (1,1) 
IGARCH with trend 
(rank changes see 

comment for 
general assessment) 

1 week ahead (451 
observations in sample 
and 414 observations 
out-of-sample) 

RMSE, MAE. It is 
not clear how 
actual volatility 
was estimated. 

Nonlinear models are, in general, better 
than linear GARCH.  Kernel method is 
best with MAE.  But most of the RMSE 
and MAE are very close.  Over 30 
kernel models were fitted, but only 
those with smallest RMSE and MAE 
were reported.  It is not clear how the 
non-linear equivalence was constructed.  
Multi-step forecast results were 
mentioned but not shown. 

64. Li (2002) $/DM, $/£, $/¥ 
 
 
OTC ATM 
options 
$/£, $/¥ 
$/DM 

3/12/86-30/12/99 
In: 12/8/86-

11/5/95 
 
 
19/6/94-13/6/99 
19/6/94-30/12/98 

Tick 
(5 min) 

 
 
 

D 
D 

Implied GK OTC ATM 
ARFIMA realised 
(Implied better at 

shorter horizon and 
ARFIMA better at 
long horizon.) 

1, 2, 3 and 6 months 
ahead.  Parameters not 
re-estimated.  Use 5-
min returns to 
construct “actual vol”. 

MAE. R2 ranges 
0.3-51% (Implied), 
7.3-47%(LM), 16-
53% (emcompass). 
For both models, 
H0:α =0, β =1 are 
rejected and 
typically β <1 
with robust SE. 

Both forecasts have incremental 
information especially at long horizon.  
Forcing: α =0, β =1 produce 
low/negative R2 (especially for long 
horizon). 
Model realised standard deviation as 
ARFIMA without log transformation 
and with no constant, which is awkward 
as a theoretical model for volatility.   

65. Lopez (2001) C$/US$, 
DM/US$, 
¥/US$, US$/£ 

1980-1995 
 
In: 1980-1993 
Out: 1994-1995 

D SV-AR(1)-normal 
GARCH-gev 
EWMA-normal 
 
GARCH-normal, -t 
EWMA-t 
AR(10)-Sq, -Abs 
Constant 
(approx rank, see 

comments) 

1 day ahead and 
probability forecasts 
for four “economic 
events”, viz. cdf of 
specific regions.  Use 
daily squared residuals 
to proxy volatility. 
Use empirical 
distribution to derive 
cdf. 

MSE, MAE, LL, 
HMSE, GMLE 
and QPS 
(quadratic 
probability scores). 

LL is the logarithmic loss function from 
Pagan and Schwert (1990), HMSE is the 
heteroskedasticity-adj MSE from 
Bollerslev and Ghysels (1996) and 
GMLE is the Gaussian quasi-ML 
function from Bollerslev, Engle and 
Nelson (1994). 
Forecasts from all models are 
indistinguishable.  QPS favours SV-n, 
GARCH-g and EWMA-n. 
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66. Loudon, Watt 
and Yadav 
(2000) 

FT All Share Jan71 – Oct97 
 
Sub-periods: 
Jan71 - Dec80 
Jan81 – Dec90 
Jan91 – Oct97 

D EGARCH, GJR, 
TS-GARCH, 
TGARCH 
NGARCH, 
VGARCH, 
GARCH, 
MGARCH 

(No clear rank, 
forecast GARCH 
vol) 

Parameters estimated 
in period 1 (or 2) used 
to produce conditional 
variances in period 2 
(or 3).  Use GARCH 
squared residuals as 
“actual” volatility. 

RMSE, regression 
on log volatility 
and a list of 
diagnostics.  R2 is 
about 4% in period 
2 and 5% in period 
3. 

TS-GARCH is an absolute return 
version of GARCH.  All GARCH 
specifications have comparable 
performance though non-linear, 
asymmetric versions seem to fare better.  
Multiplicative GARCH appears worst, 
followed by NGARCH and VGARCH 
(Engle and Ng 1993). 

67. Martens and 
Zein (2002) 

S&P500 
futures, 

¥/US$ futures, 
Crude oil 

futures 

Jan 94 - Dec 2000 
 
Jan 96 - Dec 2000 
Jun 93 - Dec 2000 

Tick Implied BAW VIX style  
Log-ARFIMA 
GARCH 
(ranked, see comment 

also) 

Non-overlapping 1, 5, 
10, 20, 30 and 40 days 
ahead. 500 daily 
observations in in-
sample which expands 
on each iteration. 

Heteroskedasticity 
adjusted RMSE. R2 
ranges 25-52% 
(implied), 15-48% 
(LM) across assets 
and horizons. Both 
models provide 
incremental info to 
encompassing regr. 

Scaled down one large oil price.  Log-
ARFIMA truncated at lag 100. Based on 
R2, Implied outperforms GARCH in 
every case, and beats Log-ARFIMA in 
¥/US$ and Crude oil.  Implied has larger 
HRMSE than Log-ARFIMA in most 
cases.  Difficult to comment on 
implied’s biasness from information 
presented. 

68. McKenzie 
(1999) 

21 A$ bilateral 
exchange rates 

Various length 
from 1/1/86 or 
4/11/92 to 
31/10/95 

D Square vs. power 
transformation 

(ARCH models with 
various lags.  See 
comment for rank.) 

1 day ahead absolute 
returns. 

RMS, ME, MAE. 
Regressions 
suggest all ARCH 
forecasts are 
biased. No R2 was 
reported.  

The optimal power is closer to 1 
suggesting squared return is not the best 
specification in ARCH type model for 
forecasting purpose. 

69. McMillan, 
Speight and 
Gwilym (2000) 

FTSE100 
FT All Share 

Jan84 – Jul96 
Jan69 – Jul96 
 
Out: 1996-1996 for 
both series. 

D, W, 
M 

RW, MA, ES, EWMA 
GARCH, TGARCH, 

EGARCH, 
CGARCH 

HIS, Regression, 
(ranked) 
 

j=1 day, 1 week and 1 
month ahead based on 
the three data 
frequencies. Use j 
period squared returns 
to proxy actual 
volatility. 

ME, MAE, RMSE 
for symmetry loss 
function. MME(U) 
& MME(O), mean 
mixed error that 
penalize 
under/over 
predictions. 

CGARCH is the component GARCH 
model.  Actual volatility is proxied by 
mean adjusted squared returns, which is 
likely to be extremely noisy. Evaluation 
conducted on variance, hence forecast 
error statistics are very close for most 
models.  RW, MA, ES dominate at low 
frequency and when crash is included.  
Performances of GARCH models are 
similar though not as good. 
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70. Noh, Engle and 
Kane (1994) 

S&P 500 index 
options 

Oct85 – Feb92 D GARCH adj for 
weekend & hols 

Implied BS weighted by 
trading volume 

(ranked, predict option 
price not “actual 
vol”) 

Option maturity. 
Based on 1,000 days 
rolling period 
estimation 

Equate 
forecastibility with 
profitability under 
the assumption of 
an inefficient 
option market 

Regression with call+put implieds, daily 
dummies and previous day returns to 
predict next day implied and option 
prices.  Straddle strategy is not vega 
neutral even though it might be delta 
neutral assuming market is complete. It 
is possible that profit is due to now 
well-documented post 87’s crash higher 
option premium. 

71. Pagan and 
Schwert (1990) 

US stock 
market 

1834-1937 
Out: 1900-1925 
(low volatility), 
1926-1937 (high 
volatility) 

M EGARCH(1,2) 
GARCH(1,2) 
2-step conditional 

variance 
RS-AR(m) 
Kernel (1 lag) 
Fourier (1 or 2 lags) 
(ranked) 

One month ahead. Use 
squared residual 
monthly returns to 
proxy actual volatility. 

R2 is 7-11% for 
1900-25 and 8% 
for 1926-37. 
Compared with R2 
for variance, R2 for 
log variance is 
smaller in 1900-25 
and larger in 1926-
37.  

The nonparametric models fared worse 
than the parametric models.  EGARCH 
came out best because of the ability to 
capture volatility asymmetry. Some 
prediction bias was documented. 

72. Pong, 
Shackleton, 
Taylor and Xu 
(2002) 

US$/£ In: Jul87-Dec93 
Out: Jan94– Dec98 

5-, 30-
minute 

Implied ATM, OTC quote 
(bias adj using 
rolling regr on last 
5 years monthly 
data) 

Log-ARMA(2,1) 
Log-ARFIMA(1,d,1) 
GARCH(1,1) 
(ranked) 

1 month and 3 month 
ahead at 1-month 
interval 

ME, MSE, 
regression. R2 
ranges between 22-
39% (1-month) 
and 6-21% (3-
month) 

Implied, ARMA and ARFIMA have 
similar performance. GARCH(1,1) 
clearly inferior. Best combination is 
Implied+ARMA(2,1).  Log-AR(FI)MA 
forecasts adjusted for Jensen inequality.  
Difficult to comment on implied’s 
biasness from information presented. 

73. Poteshman 
(2000) 

S&P 500 
(SPX) & 
futures 
 
 
S&P 500 

1Jun88–29Aug97 
 
Heston estimation: 
1Jun93-29Aug97 
 
7Jun62-May93 

D 
 

futures 
Tick 

 
M 

Implied Heston 
Implied BS (both 

implieds are from 
WLS of all options 
<7 months but >6 
calendar days) 

HIS 1, 2, 3,6 months  
(ranked) 

Option maturity 
(about 3.5 to 4 weeks, 
non-overlapping). Use 
5-min futures inferred 
index return to proxy 
“actual vol”. 

BS R2 is over 50%.  
Heston implied 
produced similar 
R2 but very close 
to being unbiased.  

F test for H0:α BS=0, β  BS =1 are 
rejected though t-test supports H0 on 
individual coefficients. 
Show biasness is not caused by bid-ask 
spread. Using ln σ , high frequency 
realised vol, and Heston model, all help 
to reduce implied biasness.  
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74. Randolph and 
Najand (1991) 

S&P500 
futures options 
 
ATM Calls 
only 

2/1/1986-31/12/88 
(Crash included) 
 
In: First 80 
observations 

Daily 
opening 

Tick 

MRM  ATM HIS 
MRM  ATM implied 
GARCH(1,1) 
HIS20 day  
Implied Black 
(ranked though the 

error statis tics are 
close) 

Non-overlapping 20 
days ahead, re-
estimated using 
expanding sample. 

ME, RMSE, MAE, 
MAPE 

Mean reversion model (MRM) sets drift 
rate of volatility to follow a mean 
reverting process taking implied ATM (or 
HIS) as the previous day vol.  Argue 
that GARCH did not work as well 
because it tends to provide a persistent 
forecast, which is valid only in period 
when changes in vol are small. 

75. Schmalensee 
and Trippi 
(1978) 

6 CBOE stock 
options 

29/4/74 – 23/5/75 
 
56 weekly 
observations 

W Implied BS call (simple 
average of all 
strikes and all 
maturities.) 

(Forecast implied not 
actual volatility.) 

1 week ahead. 
“Actual” proxied by 
weekly range and 
average price 
deviation. 

Statistical tests 
reject the 
hypothesis that IV 
responds positively 
to current 
volatility. 

Find implied rises when stock price 
falls, negative serial correlation in 
changes of IV and a tendency for IV of 
different stocks to move together.  
Argue that IV might correspond better 
with future volatility. 

76. Scott and 
Tucker (1989) 

 

DM/$, £/$, 
C$/$, ¥/$ & 
SrFr/$ 
American 
options on 
PHLX 

14/3/83-13/3/87 
(Pre crash) 

Daily 
closing 

tick 

Implied GK (vega, 
Inferred ATM, 
NTM) 

Implied CEV  
(similar rank) 

Non-overlapping 
option maturity: 3, 6 
and 9 months.  Use 
sample SD of daily 
returns to proxy 
“actual vol”. 

MSE, R2 ranges 
from 42 to 49%.  
In all cases, α >0, 
β <1. HIS has no 

incremental info 
content. 

Simple B-S forecasts just as well as 
sophisticated CEV model. Claimed 
omission of early exercise is not 
important.  Weighting scheme does not 
matter.  Forecasts for different 
currencies were mixed together. 

77. Sill (1993) 
 

S&P 500 1959-1992 M HIS with exo variables 
HIS 
(See comment) 

1 month ahead R2 increase from 
1% to 10% when 
additional 
variables were 
added. 

Volatility is higher in recessions than in 
expansions, and the spread between 
commercial-paper and T-Bill rates 
predict stock market volatility. 

78. Szakmary, Ors, 
Kim and 
Davidson 
(2002) 

Futures options 
on S&P500,  
9 interest rates, 
5 currency,  
4 energy,  
3 metals,  
10 agriculture 
3 livestock  

Various dates 
between  
Jan83-May2001 

D Implied BK, NTM 

2Calls+2Puts eq al weight  
HIS30, GARCH 
(ranked) 

Overlapping option 
maturity, shortest but 
>10 days.  Use sample 
SD of daily returns 
over forecast horizon 
to proxy “actual vol”. 

R2 smaller for 
financial (23-
28%), higher for 
metal & agricult 
(30-37%), highest 
for livestock & 
energy (47,58%)  

HIS30 and GARCH have little or no 
incremental information content.  
α implied>0 for 24 cases (or 69%), all 35 
cases β implied<1 with robust SE. 

79. Taylor JW 
(2001) 

DAX, S&P500, 
Hang Seng, 
FTSE100, 
Amsterdam 
EOE, Nikkei, 
Singapore All 
Share 

6/1/88-30/8/95 
(equally split 
between in- and 
out-) 

W STES (E, AE, EAE) 
GJR (+Smoothed 

variations) 
GARCH 
MA20 weeks, Riskmetrics 
(ranked) 

1 week ahead using a 
moving window of 
200 weekly returns. 
Use daily squared 
residual returns to 
construct weekly 
“actual” volatility. 

ME, MAE, RMSE, 
R2 (about 30% for 
HK and Japan and 
6% for US) 

Models estimated based on minimizing 
in-sample forecast errors instead of ML. 
STES-EAE (smooth transition 
exponential smoothing with return and 
absolute return as transition variables) 
produced consistently better 
performance for 1-step ahead forecasts. 
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80. Taylor SJ 
(1986) 

15 US stocks 
FT30 
6 metal 
£/$ 
5 agricultural 

futures 
4 interest rate 

futures 

Jan66 – Dec 76 
Jul75 – Aug82 
Various length 
Nov74 – Sep 82 
Various length 
 
Various length 

D EWMA 
Log-AR(1) 
ARMACH-Abs 
ARMACH-Sq 
HIS 
(ranked) 
 
ARMACH-Sq is 

similar to GARCH 

1 and 10 days ahead 
absolute returns. 2/3 
of sample used in 
estimation. Use daily 
absolute returns 
deviation as “actual 
vol”. 

Relative MSE Represent one of the earliest studies in 
ARCH class forecasts.  The issue of 
volatility stationarity is not important 
when forecast over short horizon.  Non-
stationary series (e.g. EWMA) has the 
advantage of having fewer parameter 
estimates and forecasts respond to 
variance change fairly quickly. 

81. Taylor SJ 
(1987) 

DM/$ futures 1977-83 D High, low and closing 
prices 

(see comment) 

1, 5, 10 & 20 days 
ahead. Estimation 
period, 5 years. 

RMSE Best model is a weighted average of 
present and past high, low and closing 
prices with adjustments for weekend 
and holiday effects. 

82. Taylor SJ and 
Xu (1997) 

DM/$ 
 
 
 
DM/$ options 
on PHLX 

1/10/92 – 30/9/93 
In: 9 months 
Out: 3 months 

Quote 
 
 
 

D 

Implied + ARCH 
combined 

Implied, ARCH 
HIS 9 months  
HIS last hour realised vol  
(ranked) 
 
See comment for 

details on implied 
& ARCH  

1 hour ahead 
estimated from 9 
months in-sample 
period. Use 5-min 
returns to proxy 
“actual vol”. 

MAE and MSE on 
std deviation & 
variance 
 
Friday macro news 
seasonal factors 
have no impact on 
forecast accuracy. 

5-min return has information 
incremental to daily implied when 
forecasting hourly volatility. 
 
ARCH model includes with hourly and 
5-min returns in the last hr plus 120 
hour/day/week seasonal factors.  
Implied derived from NTM shortest 
maturity (>9 calendar days) Call+Put 
using BAW. 

83. Tse (1991) Topix 
Nikkei Stock 
Average 

In:  1986-1987 
 
Out: 88-89 

D EWMA  
HIS 
ARCH, GARCH 
(ranked) 

25 days ahead 
estimated from rolling 
300 observations 

ME, RMSE, MAE, 
MAPE of variance 
of 21 non-
overlapping 25-
day periods. 

Use dummies in mean equation to 
control for 1987 crash.  Non-normality 
provides a better fit but a poorer 
forecast. ARCH/GARCH models are 
slow to react to abrupt change in 
volatility. EWMA adjust to changes 
very quickly.  

84. Tse and Tung 
(1992) 

Singapore, 5 
VW market & 
industry indices 

19/3/75 to 
25/10/88 

D EWMA 
HIS 
GARCH 
(ranked) 

25 days ahead 
estimated from rolling 
425 observations 

RMSE, MAE EWMA is superior, GARCH worst. 
Absolute returns > 7% are truncated. 
Sign of non-stationarity.  Some GARCH 
non-convergence 
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85. Vasilellis and 
Meade (1996) 

Stock options 
12 UK stocks 
(LIFFE) 

In:  
28/3/86 – 27/6/86 
 
In2 (for combine 
forecast): 
28/6/86 – 25/3/88 
 
Out: 
6/7/88 – 21/9/91 

W Combine(Implied + 
GARCH) 

Implied (various, see 
comment) 

GARCH 
EWMA 
HIS 3 months  
(ranked, results not 

sensitive to basis 
use to combine) 

3 months ahead. Use 
sample SD of daily 
returns to proxy 
“actual vol”. 

RMSE Implied: 5-day average dominates 1-day 
implid vol. Weighting scheme: max 
vega>vega weighted>elasticity 
weighted>max elasticity with ‘>’ 
indicates better forecasting 
performance. Adjustment for div & 
early exercise: Rubinstein>Roll> 
constant yield. 
Crash period might have disadvantaged 
time series methods. 

86. Vilasuso 
(2002) 

C$/$, FFr/$, 
DM/$, ¥/$, £/$ 

In: 13/3/79 – 
31/12/97 

Out: 1/1/98 – 
31/12/99 

D FIGARCH 
GARCH, IGARCH 
(ranked, GARCH 

marginally better 
than IGARCH) 

1, 5 and 10 days 
ahead.  Used daily 
squared returns to 
proxy actual volatility. 

MSE, MAE, & 
Diebold-Mariano’s 
test for sig. 
difference. 

Significantly better forecasting 
performance from FIGARCH.  Built 
FIARMA (with a constant term) on 
conditional variance without taking log. 
Truncated at lag 250. 

87. Walsh and 
Tsou (1998) 

Australian 
indices: VW20, 
VW50 & 
VW300 

1Jan93-31Dec95 
 
In: 1 year 
Out: 2 years 

5-min 
to form 
H, D & 

W 
returns 

EWMA 
GARCH (not for 
weekly returns) 
HIS, IEV (Improved 

extreme-value 
method) 

(ranked) 

1 hour, 1 day and 1 
week ahead estimated 
from a 1-year rolling 
samp le.  Use square of 
price changes (non 
cumulative) as “actual 
vol”. 

MSE, RMSE, 
MAE, MAPE 

Index with larger number of stock is 
easier to forecast due to diversification, 
but gets harder as sampling interval 
becomes shorter due to problem of non-
synchronous t rading.  None of the 
GARCH estimations converged for the 
weekly series, probably too few 
observations. 

88. Wei and 
Frankel (1991) 

SrFr/$, DM/$, 
¥/$, £/$ options 
(PHLX) 
 
Spot rates 

2/83–1/90 M 
 
 
 

D 

Implied GK ATM call 
(shortest maturity) 

 

Non-overlapping 1 
month ahead. Use 
sample SD of daily 
exchange rate return to 
proxy “actual vol” 

R2 30%(£), 17% 
(DM ), 3%( SrFr), 
0%(¥). α >0, β <1 
(except that for 
£/$, α >0, β =1) 
with heteroske 
consistent SE. 

Use European formula for American 
style option. Also suffers from non-
synchronicity problem.  Other tests 
reveal that Implied tends to over-predict 
high vol and under-predict low vol.  
Forecast/implied could be made more 
accurate by placing more weight on 
long run average. 

89. West and Cho 
(1995) 

C$/$, FFr/$, 
DM/$, ¥/$, £/$ 

14/3/73-20/9/89 
 
In: 14/3/73 – 

17/6/81 
Out: 24/6/81 – 

12/4/89 

W GARCH(1,1) 
IGARCH(1,1) 
AR(12) in absolute 
AR(12) in squares 
Homoskedastic 
Gaussian kernel 
(No clear rank) 

J=1, 12, 24 weeks 
estimated from rolling 
432 weeks.  Use j 
period squared returns 
to proxy actual 
volatility. 

RMSE and 
regression test on 
variance, R2 varies 
from 0.1% to 
4.5%. 

Some GARCH forecasts mean revert to 
unconditional variance in 12- to 24-
weeks. It is difficult to choose between 
models.  Nonparametric method came 
out worst though statistical tests for do 
not reject null of no significance 
difference in most cases.. 
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90. Wiggins (1992) S&P 500 
futures 

4/82–12/89 D ARMA model with 2 
types of estimators: 

1. Parkinson/Garmen-
Klass extreme 
value estimators 

2. Close-to-close 
estimator 

(ranked) 

1 week ahead and 1 
month ahead. 
Compute actual 
volatility from daily 
observations. 

Bias test, 
efficiency test, 
regression 

Modified Parkinson approach is least 
biased.  C-t-C estimator is three times 
less efficient than EV estimators.  
Parkinson estimator is also better than 
C-t-C at forecasting. 87’s crash period 
excluded from analysis. 

91. Xu and Taylor 
(1995) 

£/$, DM/$, ¥/$ 
& SrFr/$ 
PHLX options 
 
Corresponding 
futures rates 

In: Jan85-Oct89 
 
Out:  
18Oct89-4Feb92 

D Implied BAW NTM TS or 

short 
GARCHNormal or GED  
HIS 4 weeks  
(ranked) 

Non-overlapping 4 
weeks ahead, 
estimated from a 
rolling sample of 250 
weeks daily data. Use 
cumulative daily 
squared returns to 
proxy “actual vol”. 

ME, MAE, RMSE. 
When α implied is 
set equal to 0, 
β implied=1 cannot 
be rejected. 

Implied works best and is unbiased. 
Other forecasts have no incremental 
information.  GARCH forecast 
performance not sensitive to 
distributional assumption about returns.  
The choice of implied predictor (term 
structure, TS, or short maturity) does 
not affect results. 

92. Yu (2002) NZSE40 Jan80 - Dec98 
 
In: 1980-1993 
Out: 1994-1998 

D SV (of log variance) 
GARCH(3,2), 

GARCH(1,1) 
HIS, MA 5yr or 10 yr 
ES and EWMA 

(monthly revision) 
Regression lag-1 
ARCH(9), RW,  
(ranked) 

1 month ahead 
estimated from 
previous 180 to 228 
months of daily data.  
Use aggregate of daily 
squared returns to 
construct actual 
monthly volatility. 

RMSE, MAE, 
Theil-U and 
LINEX on 
variance 

Range of the evaluation measures for 
most models is very narrow. Within this 
narrow range, SV ranked first, 
performance of GARCH was sensitive 
to evaluation measure; regression and 
EWMA methods did not perform well. 
Worst performance from ARCH(9) and 
RW. Volatile periods (Oct 87 and Oct 
97) included in in- and out-of samples. 

93. Zumbach 
(2002) 

USD/CHF, 
USD/JPY 

1/1/89 – 1/7/2000 H LM-ARCH 
F-GARCH 
GARCH 
And their integrated 

counterparts  
(ranked) 

1 day ahead estimated 
from previous 5.5 
years 

RMSE.  Realized 
volatility measured 
using hourly 
returns. 

LM-ARCH, aggregates high frequency 
squared returns with a set of power law 
weights, is the best though difference is 
small.  All integrated versions are more 
stable across time. 

 
Ranked: models appear in the order of forecasting performance; best performing model at the top.  If two weighting schemes or two forecasting models appear at both sides of “>”, it means 
the LHS is better than the RHS in terms of forecasting performance.  SE: Standard error. 
ATM: At the money, NTM: Near the money, OTM: Out of the money, WLS: an implied volatility weighting scheme used in Whaley (1982) designed to minimize the pricing errors of a 
collection of options.  In some cases the pricing errors are multiplied by trading volume or vega to give ATM implied a greater weight. 
HIS: Historical volatility constructed based on past variance/standard deviation. VIX: Chicago Board of Option Exchange’s volatility index derived from S&P 100 options. RS: Regime 
Switching,  
BS: Black-Scholes, BK: Black model for pricing futures option.  BAW: Barone-Adesi and Whaley American option pricing formula,  HW: Hull and White option pricing model with 
stochastic volatility, FW: Fleming and Whaley (1994) modified binomial method that takes into account wildcard option, GK: Garman and Kohlhagan model for pricing European currency 
option. HJM: Heath, Jarrow and Morton (1992) forward rate model for interest rates. 


